scholarly journals Simplicity of skew inverse semigroup rings with applications to Steinberg algebras and topological dynamics

2019 ◽  
Vol 31 (3) ◽  
pp. 543-562 ◽  
Author(s):  
Viviane Beuter ◽  
Daniel Gonçalves ◽  
Johan Öinert ◽  
Danilo Royer

Abstract Given a partial action π of an inverse semigroup S on a ring {\mathcal{A}} , one may construct its associated skew inverse semigroup ring {\mathcal{A}\rtimes_{\pi}S} . Our main result asserts that, when {\mathcal{A}} is commutative, the ring {\mathcal{A}\rtimes_{\pi}S} is simple if, and only if, {\mathcal{A}} is a maximal commutative subring of {\mathcal{A}\rtimes_{\pi}S} and {\mathcal{A}} is S-simple. We apply this result in the context of topological inverse semigroup actions to connect simplicity of the associated skew inverse semigroup ring with topological properties of the action. Furthermore, we use our result to present a new proof of the simplicity criterion for a Steinberg algebra {A_{R}(\mathcal{G})} associated with a Hausdorff and ample groupoid {\mathcal{G}} .

2020 ◽  
pp. 1-35
Author(s):  
Daniel Gonçalves ◽  
Benjamin Steinberg

Abstract Given an action ${\varphi }$ of inverse semigroup S on a ring A (with domain of ${\varphi }(s)$ denoted by $D_{s^*}$ ), we show that if the ideals $D_e$ , with e an idempotent, are unital, then the skew inverse semigroup ring $A\rtimes S$ can be realized as the convolution algebra of an ample groupoid with coefficients in a sheaf of (unital) rings. Conversely, we show that the convolution algebra of an ample groupoid with coefficients in a sheaf of rings is isomorphic to a skew inverse semigroup ring of this sort. We recover known results in the literature for Steinberg algebras over a field as special cases.


1990 ◽  
Vol 41 (3) ◽  
pp. 343-346 ◽  
Author(s):  
Adel A. Shehadah

A ring (R, *) with involution * is called formally complex if implies that all Ai are 0. Let (R, *) be a formally complex ring and let S be an inverse semigroup. Let (R[S], *) be the semigroup ring with involution * defined by . We show that (R[S], *) is a formally complex ring. Let (S, *) be a semigroup with proper involution *(aa* = ab* = bb* ⇒ a = b) and let (R, *′) be a formally complex ring. We give a sufficient condition for (R[S], *′) to be a formally complex ring and this condition is weaker than * being the inverse involution on S. We illustrate this by an example.


2020 ◽  
Vol 18 (1) ◽  
pp. 1491-1500
Author(s):  
Yingdan Ji

Abstract In this paper, we study the strong nil-cleanness of certain classes of semigroup rings. For a completely 0-simple semigroup M={ {\mathcal M} }^{0}(G;I,\text{Λ};P) , we show that the contracted semigroup ring {R}_{0}{[}M] is strongly nil-clean if and only if either |I|=1 or |\text{Λ}|=1 , and R{[}G] is strongly nil-clean; as a corollary, we characterize the strong nil-cleanness of locally inverse semigroup rings. Moreover, let S={[}Y;{S}_{\alpha },{\varphi }_{\alpha ,\beta }] be a strong semilattice of semigroups, then we prove that R{[}S] is strongly nil-clean if and only if R{[}{S}_{\alpha }] is strongly nil-clean for each \alpha \in Y .


1980 ◽  
Vol 32 (6) ◽  
pp. 1361-1371 ◽  
Author(s):  
Bonnie R. Hardy ◽  
Thomas S. Shores

Throughout this paper the ring R and the semigroup S are commutative with identity; moreover, it is assumed that S is cancellative, i.e., that S can be embedded in a group. The aim of this note is to determine necessary and sufficient conditions on R and S that the semigroup ring R[S] should be one of the following types of rings: principal ideal ring (PIR), ZPI-ring, Bezout, semihereditary or arithmetical. These results shed some light on the structure of semigroup rings and provide a source of examples of the rings listed above. They also play a key role in the determination of all commutative reduced arithmetical semigroup rings (without the cancellative hypothesis on S) which will appear in a forthcoming paper by Leo Chouinard and the authors [4].


1988 ◽  
Vol 110 ◽  
pp. 113-128 ◽  
Author(s):  
Lê Tuân Hoa

Let N denote the set of non-negative integers. An affine semigroup is a finitely generated submonoid S of the additive monoid Nm for some positive integer m. Let k[S] denote the semigroup ring of S over a field k. Then one can identify k[S] with the subring of a polynomial ring k[t1, …, tm] generated by the monomials .


Author(s):  
E. Jespers

AbstractThe following questions are studied: When is a semigroup graded ring left Noetherian, respectively semiprime left Goldie? Necessary sufficient conditions are proved for cancellative semigroup-graded subrings of rings weakly or strongly graded by a polycyclic-by-finite (unique product) group. For semigroup rings R[S] we also give a solution to the problem in case S is an inverse semigroup.


Mathematics ◽  
2019 ◽  
Vol 7 (10) ◽  
pp. 990
Author(s):  
Inhyeop Yi

For self-similar graph actions, we show that isomorphic inverse semigroups associated to a self-similar graph action are a complete invariant for the continuous orbit equivalence of inverse semigroup actions on infinite path spaces.


2010 ◽  
Vol 2010 ◽  
pp. 1-13 ◽  
Author(s):  
Tetyana Berezovski ◽  
Oleg Gutik ◽  
Kateryna Pavlyk

We study (countably) compact and (absolutely) -closed primitive topological inverse semigroups. We describe the structure of compact and countably compact primitive topological inverse semigroups and show that any countably compact primitive topological inverse semigroup embeds into a compact primitive topological inverse semigroup.


2007 ◽  
Vol 06 (04) ◽  
pp. 655-669 ◽  
Author(s):  
ANN DOOMS ◽  
PAULA M. VELOSO

In this article, we introduce the normalizer [Formula: see text] of a subset X of a ring R (with identity) in the unit group [Formula: see text] and consider, in particular, the normalizer of the natural basis ±S of the integral semigroup ring ℤ0S of a finite semigroup S. We investigate properties of this normalizer for the class of semigroup rings of inverse semigroups, which contains, for example, matrix rings, in particular, matrix rings over group rings, and partial group rings. We also construct free groups in the unit group of an integral semigroup ring of a Brandt semigroup using a bicyclic unit.


1980 ◽  
Vol 21 (1) ◽  
pp. 131-134 ◽  
Author(s):  
Mark L. Teply

If R is a ring and S is a semigroup, the corresponding semigroup ring is denoted by R[S]. A ring is semiprime if it has no nonzero nilpotent ideals. A semigroup S is a semilattice P of semigroups Sα if there exists a homomorphism φ of S onto the semilattice P such that Sα = αφ−1 for each α ∈ P.


Sign in / Sign up

Export Citation Format

Share Document