Buchsbaumness in local rings possessing constant first Hilbert coefficients of parameters
2010 ◽
Vol 199
◽
pp. 95-105
◽
Keyword(s):
AbstractLet (A,m) be a Noetherian local ring withd= dimA≥ 2. Then, ifAis a Buchsbaum ring, the first Hilbert coefficientsofAfor parameter idealsQare constant and equal towherehi(A)denotes the length of theith local cohomology moduleofAwith respect to the maximal ideal m. This paper studies the question of whether the converse of the assertion holds true, and proves thatAis a Buchsbaum ring ifAis unmixed and the valuesare constant, which are independent of the choice of parameter idealsQinA. Hence, a conjecture raised by [GhGHOPV] is settled affirmatively.
2010 ◽
Vol 199
◽
pp. 95-105
◽
Keyword(s):
1985 ◽
Vol 28
(3)
◽
pp. 349-353
◽
Keyword(s):
2016 ◽
Vol 16
(09)
◽
pp. 1750163
Keyword(s):
2019 ◽
Vol 30
(02)
◽
pp. 379-396
1988 ◽
Vol 104
(3)
◽
pp. 451-478
◽
Keyword(s):
2013 ◽
Vol 212
◽
pp. 97-138
◽
2009 ◽
Vol 79
(1)
◽
pp. 59-67
◽
2018 ◽
Vol 168
(2)
◽
pp. 305-322
◽
Keyword(s):