scholarly journals Symplectic structures and symmetries of solutions of the complex Monge-Ampére equation

1998 ◽  
Vol 150 ◽  
pp. 63-83
Author(s):  
Stanley M. Einstein-Matthews

Abstract.The graphs that arise from the gradients of solutions u of the homogeneous complex Monge-Ampère equation are characterized in terms of the natural symplectic structure on the cotangent bundle. This characterization is invariant under symplectic biholomorphisms. Using the symplectic structures we construct symmetries (to be called Lempert transformations) for real valued functions u which are absolutely continuous on lines. We then use these symmetries to generate interesting solutions to the homogeneous complex Monge-Ampère equation and to transform the Poincaré-Lelong equation and the ∂-equation. An example of Lempert transform is given and the main theorem is applied to prove regularity results for exterior nonlinear Dirichlet problem for the homogeneous complex Monge-Ampère equation.

2018 ◽  
Vol 18 (2) ◽  
pp. 289-302
Author(s):  
Zhijun Zhang

AbstractThis paper is concerned with the boundary behavior of the unique convex solution to a singular Dirichlet problem for the Monge–Ampère equation\operatorname{det}D^{2}u=b(x)g(-u),\quad u<0,\,x\in\Omega,\qquad u|_{\partial% \Omega}=0,where Ω is a strictly convex and bounded smooth domain in{\mathbb{R}^{N}}, with{N\geq 2},{g\in C^{1}((0,\infty),(0,\infty))}is decreasing in{(0,\infty)}and satisfies{\lim_{s\rightarrow 0^{+}}g(s)=\infty}, and{b\in C^{\infty}(\Omega)}is positive in Ω, but may vanish or blow up on the boundary. We find a new structure condition ongwhich plays a crucial role in the boundary behavior of such solution.


1993 ◽  
Vol 21 (7) ◽  
pp. 547-564 ◽  
Author(s):  
Mario Michele Coclite

Sign in / Sign up

Export Citation Format

Share Document