cotangent bundle
Recently Published Documents


TOTAL DOCUMENTS

245
(FIVE YEARS 53)

H-INDEX

14
(FIVE YEARS 2)

2021 ◽  
Vol 3 (1) ◽  
pp. 12
Author(s):  
Ariel Caticha

The mathematical formalism of quantum mechanics is derived or “reconstructed” from more basic considerations of the probability theory and information geometry. The starting point is the recognition that probabilities are central to QM; the formalism of QM is derived as a particular kind of flow on a finite dimensional statistical manifold—a simplex. The cotangent bundle associated to the simplex has a natural symplectic structure and it inherits its own natural metric structure from the information geometry of the underlying simplex. We seek flows that preserve (in the sense of vanishing Lie derivatives) both the symplectic structure (a Hamilton flow) and the metric structure (a Killing flow). The result is a formalism in which the Fubini–Study metric, the linearity of the Schrödinger equation, the emergence of complex numbers, Hilbert spaces and the Born rule are derived rather than postulated.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Javier Pérez Álvarez

AbstractThe Lagrange–Charpit theory is a geometric method of determining a complete integral by means of a constant of the motion of a vector field defined on a phase space associated to a nonlinear PDE of first order. In this article, we establish this theory on the symplectic structure of the cotangent bundle $$T^{*}Q$$ T ∗ Q of the configuration manifold Q. In particular, we use it to calculate explicitly isotropic submanifolds associated with a Hamilton–Jacobi equation.


2021 ◽  
Vol 157 (11) ◽  
pp. 2433-2493
Author(s):  
Cedric Membrez ◽  
Emmanuel Opshtein

Abstract Our main result is the $\mathbb {\mathcal {C}}^{0}$ -rigidity of the area spectrum and the Maslov class of Lagrangian submanifolds. This relies on the existence of punctured pseudoholomorphic disks in cotangent bundles with boundary on the zero section, whose boundaries represent any integral homology class. We discuss further applications of these punctured disks in symplectic geometry.


Author(s):  
Maxence Mayrand

Abstract The first part of this paper is a generalization of the Feix–Kaledin theorem on the existence of a hyperkähler metric on a neighborhood of the zero section of the cotangent bundle of a Kähler manifold. We show that the problem of constructing a hyperkähler structure on a neighborhood of a complex Lagrangian submanifold in a holomorphic symplectic manifold reduces to the existence of certain deformations of holomorphic symplectic structures. The Feix–Kaledin structure is recovered from the twisted cotangent bundle. We then show that every holomorphic symplectic groupoid over a compact holomorphic Poisson surface of Kähler type has a hyperkähler structure on a neighborhood of its identity section. More generally, we reduce the existence of a hyperkähler structure on a symplectic realization of a holomorphic Poisson manifold of any dimension to the existence of certain deformations of holomorphic Poisson structures adapted from Hitchin’s unobstructedness theorem.


Author(s):  
Giulio Codogni ◽  
Thomas Krämer

AbstractWe show that the degree of Gauss maps on abelian varieties is semicontinuous in families, and we study its jump loci. As an application we obtain that in the case of theta divisors this degree answers the Schottky problem. Our proof computes the degree of Gauss maps by specialization of Lagrangian cycles on the cotangent bundle. We also get similar results for the intersection cohomology of varieties with a finite morphism to an abelian variety; it follows that many components of Andreotti–Mayer loci, including the Schottky locus, are part of the stratification of the moduli space of ppav’s defined by the topological type of the theta divisor.


Author(s):  
L. Fehér

AbstractWe construct a bi-Hamiltonian structure for the holomorphic spin Sutherland hierarchy based on collective spin variables. The construction relies on Poisson reduction of a bi-Hamiltonian structure on the holomorphic cotangent bundle of $$\mathrm{GL}(n,\mathbb {C})$$ GL ( n , C ) , which itself arises from the canonical symplectic structure and the Poisson structure of the Heisenberg double of the standard $$\mathrm{GL}(n,\mathbb {C})$$ GL ( n , C ) Poisson–Lie group. The previously obtained bi-Hamiltonian structures of the hyperbolic and trigonometric real forms are recovered on real slices of the holomorphic spin Sutherland model.


Sign in / Sign up

Export Citation Format

Share Document