barrier functions
Recently Published Documents





Luca Massimino ◽  
Salvatore Spanò ◽  
Luigi Antonio Lamparelli ◽  
Davide Fuggetta ◽  
Laurent Peyrin-Biroulet ◽  

Lay Summary The JAK/STAT inhibitor tofacitinib, recently approved for the treatment of ulcerative colitis, is found to modulate the intestinal endothelial barrier functions in directing the leukocyte adhesion and transmigration in ulcerative colitis patients displaying high levels of endothelial STAT3/STAT6 phosphorylation.

Beatrice Capelli ◽  
Cristian Secchi ◽  
Lorenzo Sabattini

Toxins ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 902
Pengfei Zhang ◽  
Changwei Jing ◽  
Ming Liang ◽  
Shuzhen Jiang ◽  
Libo Huang ◽  

This study aims to investigate the effects of exposure to different dosages of zearalenone (ZEA) on cecal physical barrier functions and its mechanisms based on the TGF-β1/Smads signaling pathway in weaned piglets. Thirty-two weaned piglets were allotted to four groups and fed a basal diet supplemented with ZEA at 0, 0.15, 1.5, and 3.0 mg/kg, respectively. The results showed that 1.5 and 3.0 mg/kg ZEA damaged cecum morphology and microvilli, and changed distribution and shape of M cells. Moreover, 1.5 and 3.0 mg/kg ZEA decreased numbers of goblet cells, the expressions of TFF3 and tight junction proteins, and inhibited the TGF-β1/Smads signaling pathway. Interestingly, the 0.15 mg/kg ZEA had no significant effect on cecal physical barrier functions but decreased the expressions of Smad3, p-Smad3 and Smad7. Our study suggests that high-dose ZEA exposure impairs cecal physical barrier functions through inhibiting the TGF-β1/Smads signaling pathway, but low-dose ZEA had no significant effect on cecum morphology and integrity through inhibiting the expression of smad7. These findings provide a scientific basis for helping people explore how to reduce the toxicity of ZEA in feeds.

2021 ◽  
Vol 11 (1) ◽  
Sophea Heng ◽  
Nirukshi Samarajeewa ◽  
Yao Wang ◽  
Sarah G. Paule ◽  
James Breen ◽  

AbstractEmbryo implantation is a key step in establishing pregnancy and a major limiting factor in IVF. Implantation requires a receptive endometrium but the mechanisms governing receptivity are not well understood. We have recently discovered that podocalyxin (PCX or PODXL) is a key negative regulator of human endometrial receptivity. PCX is expressed in all endometrial epithelial cells in the non-receptive endometrium but selectively down-regulated in the luminal epithelium at receptivity. We have further demonstrated that this down-regulation is essential for implantation because PCX inhibits embryo attachment and penetration. However, how PCX confers this role is unknown. In this study, through RNAseq analysis of Ishikawa cell line stably overexpressing PCX, we discovered that PCX suppresses expression of genes controlling cell adhesion and communication, but increases those governing epithelial barrier functions, especially the adherens and tight junctions. Moreover, PCX suppresses multiple factors such as LIF and signaling pathways including Wnt and calcium signaling that support receptivity but stimulates anti-implantation genes such as LEFTY2. Functional studies confirmed that PCX promotes epithelial barrier functions by increasing key epithelial junction proteins such as E-cadherin and claudin 4. PCX thus promotes an anti-adhesive and impermeable epithelium while impedes pro-implantation factors to negatively control endometrial receptivity for implantation.

Sign in / Sign up

Export Citation Format

Share Document