scholarly journals Survey of the Bootes Void

1983 ◽  
Vol 104 ◽  
pp. 197-201
Author(s):  
R. P. Kirshner ◽  
A. Oemler ◽  
P. L. Schechter ◽  
S. A. Shectman

Radial velocities have been measured for 231 galaxies chosen by apparent magnitude from 282 small fields spanning the area on the sky thought to contain the Bootes void. The galaxy distribution exhibits a spherical volume 6000 km/s in diameter in which no objects are found. The rms velocity difference of close pairs in our sample is less than 180 km/s.

1998 ◽  
Vol 11 (1) ◽  
pp. 560-561
Author(s):  
M. Grenon

As a preparation to the HIPPARCOS mission, a large observing programme on NLTT stars (propermotion > 0.18 ″/yr) was started in Genevaphotometry. The original programme consists of 10047 stars brighter than mR = 11.5, or mR = 12.5 if of colour class m. Among them, 7813 targets could be included in the HIPPARCOS programme, selected according to their observability and internal priorities in favour of large parallaxe stars (photometric distances < 100 pc) and high-velocity stars. The bulk of new nearby, halo, mild-metal poor and SMR stars in the HIP Catalogue originates from this proposal (N° 139). No less than 208 new nearby stars with π ≥ 40 mas were discovered south of δ +10°, the closest has π(HIP)= 182 mas. Radial velocities were obtained with CORAVEL at OHP and ESO. Most aspects of the early evolution of the Galaxy may be addressed with this sample. Here we discuss, as examples, the ages of the thick disk and of the galactic bulge.


2002 ◽  
Author(s):  
Philippe Querre ◽  
Jean-Luc Starck ◽  
Vicent J. Martinez

2018 ◽  
Vol 615 ◽  
pp. L5 ◽  
Author(s):  
A. Irrgang ◽  
S. Kreuzer ◽  
U. Heber ◽  
W. Brown

Context. Hypervelocity stars (HVSs) travel so fast that they may leave the Galaxy. The tidal disruption of a binary system by the supermassive black hole in the Galactic center is widely assumed to be their ejection mechanism. Aims. To test the hypothesis of an origin in the Galactic center using kinematic investigations, the current space velocities of the HVSs need to be determined. With the advent of Gaia’s second data release, accurate radial velocities from spectroscopy are complemented by proper motion measurements of unprecedented quality. Based on a new spectroscopic analysis method, we provide revised distances and stellar ages, both of which are crucial to unravel the nature of the HVSs. Methods. We reanalyzed low-resolution optical spectra of 14 HVSs from the MMT HVS survey using a new grid of synthetic spectra, which account for deviations from local thermodynamic equilibrium, to derive effective temperatures, surface gravities, radial velocities, and projected rotational velocities. Stellar masses, radii, and ages were then determined by comparison with stellar evolutionary models that account for rotation. Finally, these results were combined with photometric measurements to obtain spectroscopic distances. Results. The resulting atmospheric parameters are consistent with those of main sequence stars with masses in the range 2.5–5.0 M⊙. The majority of the stars rotate at fast speeds, providing further evidence for their main sequence nature. Stellar ages range from 90 to 400 Myr and distances (with typical 1σ-uncertainties of about 10–15%) from 30 to 100 kpc. Except for one object (B 711), which we reclassify as A-type star, all stars are of spectral type B. Conclusions. The spectroscopic distances and stellar ages derived here are key ingredients for upcoming kinematic studies of HVSs based on Gaia proper motions.


Author(s):  
M. Tsantaki ◽  
E. Pancino ◽  
P. Marrese ◽  
S. Marinoni ◽  
M. Rainer ◽  
...  
Keyword(s):  

2020 ◽  
Vol 497 (4) ◽  
pp. 4077-4090 ◽  
Author(s):  
Suman Sarkar ◽  
Biswajit Pandey

ABSTRACT A non-zero mutual information between morphology of a galaxy and its large-scale environment is known to exist in Sloan Digital Sky Survey (SDSS) upto a few tens of Mpc. It is important to test the statistical significance of these mutual information if any. We propose three different methods to test the statistical significance of these non-zero mutual information and apply them to SDSS and Millennium run simulation. We randomize the morphological information of SDSS galaxies without affecting their spatial distribution and compare the mutual information in the original and randomized data sets. We also divide the galaxy distribution into smaller subcubes and randomly shuffle them many times keeping the morphological information of galaxies intact. We compare the mutual information in the original SDSS data and its shuffled realizations for different shuffling lengths. Using a t-test, we find that a small but statistically significant (at $99.9{{\ \rm per\ cent}}$ confidence level) mutual information between morphology and environment exists upto the entire length-scale probed. We also conduct another experiment using mock data sets from a semi-analytic galaxy catalogue where we assign morphology to galaxies in a controlled manner based on the density at their locations. The experiment clearly demonstrates that mutual information can effectively capture the physical correlations between morphology and environment. Our analysis suggests that physical association between morphology and environment may extend to much larger length-scales than currently believed, and the information theoretic framework presented here can serve as a sensitive and useful probe of the assembly bias and large-scale environmental dependence of galaxy properties.


Sign in / Sign up

Export Citation Format

Share Document