galactic center
Recently Published Documents


TOTAL DOCUMENTS

2817
(FIVE YEARS 271)

H-INDEX

105
(FIVE YEARS 11)

2022 ◽  
Vol 924 (2) ◽  
pp. 86
Author(s):  
Zhijie Qu ◽  
Ryan Lindley ◽  
Joel N. Bregman

Abstract We compose a 265-sight-line Milky Way C iv line-shape sample using the Hubble Space Telescope/Cosmic Origins Spectrograph archive, which is complementary to the existing Si iv samples. C iv has a higher ionization potential (47–64 eV) than Si iv (33–45 eV), so it also traces warm gas, which is roughly cospatial with Si iv. The spatial density distribution and kinematics of C iv are identical to those Si iv within ≈2σ. C iv is more sensitive to the warm gas density distribution at large radii with a higher element abundance. Applying the kinematical model to the C iv sample, we find two possible solutions of the density distribution, which are distinguished by the relative extension along the disk midplane and the normal-line direction. Both solutions can reproduce the existing sample and suggest a warm gas disk mass of log M ( M ⊙ ) ≈ 8 and an upper limit of log M ( M ⊙ ) < 9.3 within 250 kpc, which is consistent with Si iv. There is a decrease in the C iv/Si iv column density ratio from the Galactic center to the outskirts by 0.2–0.3 dex, which may suggest a phase transition or different ionization mechanisms for C iv and Si iv. Also, we find that the difference between C iv and Si iv is an excellent tracer of small-scale features, and we find a typical size of 5°–10° for possible turbulence within individual clouds (≈1 kpc).


Author(s):  
Salvatore Capozziello ◽  
Francesco Bajardi

We discuss some main aspects of theories of gravity containing nonlocal terms in view of cosmological applications. In particular, we consider various extensions of general relativity based on geometrical invariants as [Formula: see text], [Formula: see text] and [Formula: see text] gravity where [Formula: see text] is the Ricci curvature scalar, [Formula: see text] is the Gauss–Bonnet topological invariant, [Formula: see text] the torsion scalar and the operator [Formula: see text] gives rise to nonlocality. After selecting their functional form by using Noether symmetries, we find out exact solutions in a cosmological background. It is possible to reduce the dynamics of selected models and to find analytic solutions for the equations of motion. As a general feature of the approach, it is possible to address the accelerated expansion of the Hubble flow at various epochs, in particular the dark energy issues, by taking into account nonlocality corrections to the gravitational Lagrangian. On the other hand, it is possible to search for gravitational nonlocal effects also at astrophysical scales. In this perspective, we search for symmetries of [Formula: see text] gravity also in a spherically symmetric background and constrain the free parameters, Specifically, by taking into account the S2 star orbiting around the Galactic Center SgrA[Formula: see text], it is possible to study how nonlocality affects stellar orbits around such a massive self-gravitating object.


2021 ◽  
Vol 104 (12) ◽  
Author(s):  
Florian List ◽  
Nicholas L. Rodd ◽  
Geraint F. Lewis

2021 ◽  
Author(s):  
Yang Chen ◽  
Xiao Zhang

Abstract In the gamma-ray sky, the highest fluxes come from Galactic sources: supernova remnants (SNRs), pulsars and pulsar wind nebulae, star forming regions, binaries and micro-quasars, giant molecular clouds, Galactic center, and the large extended area around the Galactic plane. The radiation mechanisms of -ray emission and the physics of the emitting particles, such as the origin, acceleration, and propagation, are of very high astrophysical significance. A variety of theoretical models have been suggested for the relevant physics and emission with energies E_1014 eV are expected to be crucial in testing them. In particular, this energy band is a direct window to test at which maximum energy a particle can be accelerated in the Galactic sources and whether the most probable source candidates such as Galactic center and SNRs are “PeVatrons”. Designed aiming at the very high energy (VHE, >100 GeV) observation, LHAASO will be a very powerful instrument in these astrophysical studies. Over the past decade, great advances have been made in the VHE -ray astronomy. More than 170 VHE -ray sources have been observed, and among them, 42 Galactic sources fall in the LHAASO field-of-view. With a sensitivity of 10 milli-Crab, LHAASO can not only provide accurate spectrum for the known -ray sources, but also search new TeV -ray sources. In the following sub-sections, the observation of all the Galactic sources with LHAASO will be discussed in details.


2021 ◽  
Vol 922 (2) ◽  
pp. 254
Author(s):  
Gerald Cecil ◽  
Alexander Y. Wagner ◽  
Joss Bland-Hawthorn ◽  
Geoffrey V. Bicknell ◽  
Dipanjan Mukherjee

Abstract MeerKAT radio continuum and XMM-Newton X-ray images have recently revealed a spectacular bipolar channel at the Galactic Center that spans several degrees (∼0.5 kpc). An intermittent jet likely formed this channel and is consistent with earlier evidence of a sustained, Seyfert-level outburst fueled by black hole accretion onto Sgr A* several Myr ago. Therefore, to trace a now weak jet that perhaps penetrated, deflected, and percolated along multiple paths through the interstellar medium, relevant interactions are identified and quantified in archival X-ray images, Hubble Space Telescope Paschen α images and Atacama Large Millimeter/submillimeter Array millimeter-wave spectra, and new SOAR telescope IR spectra. Hydrodynamical simulations are used to show how a nuclear jet can explain these structures and inflate the ROSAT/eROSITA X-ray and Fermi γ-ray bubbles that extend ± 75° from the Galactic plane. Thus, our Galactic outflow has features in common with energetic, jet-driven structures in the prototypical Seyfert galaxy NGC 1068.


2021 ◽  
Vol 923 (1) ◽  
pp. 24
Author(s):  
Nanase Harada ◽  
Sergio Martín ◽  
Jeffrey G. Mangum ◽  
Kazushi Sakamoto ◽  
Sebastien Muller ◽  
...  

Abstract Molecular abundances are sensitive to the UV photon flux and cosmic-ray ionization rate. In starburst environments, the effects of high-energy photons and particles are expected to be stronger. We examine these astrochemical signatures through multiple transitions of HCO+ and its metastable isomer HOC+ in the center of the starburst galaxy NGC 253 using data from the Atacama Large Millimeter/submillimeter Array large program ALMA Comprehensive High-resolution Extragalactic Molecular inventory. The distribution of the HOC+(1−0) integrated intensity shows its association with “superbubbles,” cavities created either by supernovae or expanding H ii regions. The observed HCO+/HOC+ abundance ratios are ∼10–150, and the fractional abundance of HOC+ relative to H2 is ∼1.5 × 10−11–6 × 10−10, which implies that the HOC+ abundance in the center of NGC 253 is significantly higher than in quiescent spiral arm dark clouds in the Galaxy and the Galactic center clouds. Comparison with chemical models implies either an interstellar radiation field of G 0 ≳ 103 if the maximum visual extinction is ≳5, or a cosmic-ray ionization rate of ζ ≳ 10−14 s−1 (3–4 orders of magnitude higher than that within clouds in the Galactic spiral arms) to reproduce the observed results. From the difference in formation routes of HOC+, we propose that a low-excitation line of HOC+ traces cosmic-ray dominated regions, while high-excitation lines trace photodissociation regions. Our results suggest that the interstellar medium in the center of NGC 253 is significantly affected by energy input from UV photons and cosmic rays, sources of energy feedback.


2021 ◽  
Vol 922 (2) ◽  
pp. 210
Author(s):  
G. V. Panopoulou ◽  
C. Dickinson ◽  
A. C. S. Readhead ◽  
T. J. Pearson ◽  
M. W. Peel

Abstract Galactic synchrotron emission exhibits large angular scale features known as radio spurs and loops. Determining the physical size of these structures is important for understanding the local interstellar structure and for modeling the Galactic magnetic field. However, the distance to these structures is either under debate or entirely unknown. We revisit a classical method of finding the location of radio spurs by comparing optical polarization angles with those of synchrotron emission as a function of distance. We consider three tracers of the magnetic field: stellar polarization, polarized synchrotron radio emission, and polarized thermal dust emission. We employ archival measurements of optical starlight polarization and Gaia distances and construct a new map of polarized synchrotron emission from WMAP and Planck data. We confirm that synchrotron, dust emission, and stellar polarization angles all show a statistically significant alignment at high Galactic latitude. We obtain distance limits to three regions toward Loop I of 112 ± 17 pc, 135 ± 20 pc, and <105 pc. Our results strongly suggest that the polarized synchrotron emission toward the North Polar Spur at b > 30° is local. This is consistent with the conclusions of earlier work based on stellar polarization and extinction, but in stark contrast with the Galactic center origin recently revisited on the basis of X-ray data. We also obtain a distance measurement toward part of Loop IV (180 ± 15 pc) and find evidence that its synchrotron emission arises from chance overlap of structures located at different distances. Future optical polarization surveys will allow the expansion of this analysis to other radio spurs.


2021 ◽  
Vol 923 (1) ◽  
pp. 15
Author(s):  
H. Sano ◽  
H. Suzuki ◽  
K. K. Nobukawa ◽  
M. D. Filipović ◽  
Y. Fukui ◽  
...  

Abstract We report on CO and H i studies of the mixed-morphology supernova remnant (SNR) G346.6−0.2. We find a wind-blown bubble along the radio continuum shell with an expansion velocity of ∼10 km s−1, which was likely formed by strong stellar winds from the high-mass progenitor of the SNR. The radial velocities of the CO/H i bubbles at V LSR = −82 to −59 km s−1 are also consistent with those of shock-excited 1720 MHz OH masers. The molecular cloud in the northeastern shell shows a high kinetic temperature of ∼60 K, suggesting that shock heating occurred. The H i absorption studies imply that G346.6−0.2 is located on the farside of the Galactic center from us, and the kinematic distance of the SNR is derived to be 11.1 − 0.3 + 0.5 kpc. We find that the CO line intensity has no specific correlation with the electron temperature of recombining plasma, implying that the recombining plasma in G346.6−0.2 was likely produced by adiabatic cooling. With our estimates of the interstellar proton density of 280 cm−3 and gamma-ray luminosity <5.8 × 1034 erg s−1, the total energy of accelerated cosmic rays of W p < 9.3 × 1047 erg is obtained. A comparison of the age–W p relation to other SNRs suggests that most of the accelerated cosmic rays in G346.6−0.2 have escaped from the SNR shell.


Sign in / Sign up

Export Citation Format

Share Document