scholarly journals Galaxy clusters as biased tracers of the galaxy distribution

1992 ◽  
Vol 254 (2) ◽  
pp. 306-314 ◽  
Author(s):  
Manolis Plionis ◽  
Stefano Borgani
2021 ◽  
Vol 34 ◽  
pp. 35-39
Author(s):  
S. I. Yemelyanov ◽  
E. A. Panko

We describe the possibilities of the “Cluster Cartography” tool which was created for detailed study of the 2D distribution of galaxies in the clusters. The main tasks of the “Cluster Cartography” tool were the detailed study of the morphologyof galaxy clusters using the statistically significant numerical criteria as well as to detect their regular peculiarities. The tool allows to create the 2D map with positions of galaxies in the cluster field and show for each cluster member its shape and orientation as a best-fit ellipse using input catalogue data. The size of symbols for galaxies correspond to input data.It may reflect the galaxy image in arcseconds from catalogue in the map 4000×4000arcsec. Another way connects the size of the symbol with the magnitude of the galaxy. Tool is able to build the map in four modes: the symbols are dots; the symbols are circles with diameters reflected the magnitudes of galaxies; the symbols are ellipses with size reflected the magnitudesand both ellipticities and orientation from the input catalogue; the symbols illustrate the shape of galaxies in projection to the celestial sphere. The “Cluster Cartography” algorithms allow to detect the standard cases in galaxy distribution, suchas the degree of concentration to the cluster center and/or to some line on a statistically significant level using the numerical criteria. Also “Cluster Cartography” allows to detect other features, such as crosses, semi-crosses, complex crosses and short compact chains, as well as to export the list of galaxies forming the peculiarities for the futurestudy. The final version of the “Cluster Cartography” allows to realize the modern scheme for detailed morphological classification of galaxy clusters. The “Cluster Cartography” is powerful and perspective tool for study of features of galaxy clusters.


2021 ◽  
Vol 503 (3) ◽  
pp. 4309-4319
Author(s):  
Jong Chul Lee ◽  
Ho Seong Hwang ◽  
Hyunmi Song

ABSTRACT To study environmental effects on the circumgalactic medium (CGM), we use the samples of redMaPPer galaxy clusters, background quasars, and cluster galaxies from the Sloan Digital Sky Survey (SDSS). With ∼82 000 quasar spectra, we detect 197 Mg ii absorbers in and around the clusters. The detection rate per quasar is 2.7 ± 0.7 times higher inside the clusters than outside the clusters, indicating that Mg ii absorbers are relatively abundant in clusters. However, when considering the galaxy number density, the absorber-to-galaxy ratio is rather low inside the clusters. If we assume that Mg ii absorbers are mainly contributed by the CGM of massive star-forming galaxies, a typical halo size of cluster galaxies is smaller than that of field galaxies by 30 ± 10 per cent. This finding supports that galaxy haloes can be truncated by interaction with the host cluster.


2011 ◽  
Vol 734 (1) ◽  
pp. 3 ◽  
Author(s):  
A. Zenteno ◽  
J. Song ◽  
S. Desai ◽  
R. Armstrong ◽  
J. J. Mohr ◽  
...  

2018 ◽  
Vol 611 ◽  
pp. A50 ◽  
Author(s):  
Konstantinos Migkas ◽  
Thomas H. Reiprich

We introduce a new test to study the cosmological principle with galaxy clusters. Galaxy clusters exhibit a tight correlation between the luminosity and temperature of the X-ray-emitting intracluster medium. While the luminosity measurement depends on cosmological parameters through the luminosity distance, the temperature determination is cosmology-independent. We exploit this property to test the isotropy of the luminosity distance over the full extragalactic sky, through the normalization a of the LX–T scaling relation and the cosmological parameters Ωm and H0. To this end, we use two almost independent galaxy cluster samples: the ASCA Cluster Catalog (ACC) and the XMM Cluster Survey (XCS-DR1). Interestingly enough, these two samples appear to have the same pattern for a with respect to the Galactic longitude. More specifically, we identify one sky region within l ~ (−15°, 90°) (Group A) that shares very different best-fit values for the normalization of the LX–T relation for both ACC and XCS-DR1 samples. We use the Bootstrap and Jackknife methods to assess the statistical significance of these results. We find the deviation of Group A, compared to the rest of the sky in terms of a, to be ~2.7σ for ACC and ~3.1σ for XCS-DR1. This tension is not significantly relieved after excluding possible outliers and is not attributed to different redshift (z), temperature (T), or distributions of observable uncertainties. Moreover, a redshift conversion to the cosmic microwave background (CMB) frame does not have an important impact on our results. Using also the HIFLUGCS sample, we show that a possible excess of cool-core clusters in this region, is not able to explain the obtained deviations. Furthermore, we tested for a dependence of the results on supercluster environment, where the fraction of disturbed clusters might be enhanced, possibly affecting the LX–T relation. We indeed find a trend in the XCS-DR1 sample for supercluster members to be underluminous compared to field clusters. However, the fraction of supercluster members is similar in the different sky regions, so this cannot explain the observed differences, either. Constraining Ωm and H0 via the redshift evolution of LX–T and the luminosity distance via the flux–luminosity conversion, we obtain approximately the same deviation amplitudes as for a. It is interesting that the general observed behavior of Ωm for the sky regions that coincide with the CMB dipole is similar to what was found with other cosmological probes such as supernovae Ia. The reason for this behavior remains to be identified.


2002 ◽  
Author(s):  
Philippe Querre ◽  
Jean-Luc Starck ◽  
Vicent J. Martinez

Sign in / Sign up

Export Citation Format

Share Document