XXII.—A Priori Estimates and Nonlinear Parabolic Equations of Arbitrary Order

Author(s):  
D. E. Edmunds ◽  
C. A. Stuart

SynopsisIn this paper it is shown that the question of the existence of a classical solution of the first initial-boundary value problem for a non-linear parabolic equation may be reduced to the problem of the derivation of suitable a priori bounds.

Author(s):  
Igor Bock

We deal with an initial-boundary value problem describing the perpendicular vibrations of an anisotropic viscoelastic plate free on its boundary and with a rigid inner obstacle. A weak formulation of the problem is in the form of the hyperbolic variational inequality. We solve the problem using the discretizing the time variable. The elliptic variational inequalities for every time level are uniquely solved. We derive the a priori estimates and the convergence of the sequence of segment line functions to a variational solution of the considered problem.


2007 ◽  
Vol 12 (1) ◽  
pp. 3-20
Author(s):  
K. Ait Hadi

This work studies an initial boundary value problem for nonlinear degenerate parabolic equation issued from a lubrication slip model. Existence of solutions is established through a semi discrete scheme approximation combined with some a priori estimates.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Xucheng Huang ◽  
Zhaoyang Shang ◽  
Na Zhang

Abstract In this paper, we consider the initial boundary value problem of two-dimensional isentropic compressible Boussinesq equations with constant viscosity and thermal diffusivity in a square domain. Based on the time-independent lower-order and time-dependent higher-order a priori estimates, we prove that the classical solution exists globally in time provided the initial mass $\|\rho _{0}\|_{L^{1}}$ ∥ ρ 0 ∥ L 1 of the fluid is small. Here, we have no small requirements for the initial velocity and temperature.


Sign in / Sign up

Export Citation Format

Share Document