scholarly journals The orbit of a Hölder continuous path under a hyperbolic toral automorphism

1983 ◽  
Vol 3 (3) ◽  
pp. 345-349 ◽  
Author(s):  
M. C. Irwin

AbstractLet f:T3→T3 be a hyperbolic toral automorphism lifting to a linear automorphism with real eigenvalues. We prove that there is a Hölder continuous path in T3 whose orbit-closure is 1-dimensional. This strengthens results of Hancock and Przytycki concerning continuous paths, and contrasts with results of Franks and Mañé concerning rectifiable paths.

1986 ◽  
Vol 6 (2) ◽  
pp. 241-257 ◽  
Author(s):  
M. C. Irwin

AbstractLet f:Tn→Tn (n ≥ 3) be a hyperbolic toral automorphism. Let A be the set of α > 0 such that there is a Hölder continuous path of index α in Tn with 1-dimensional orbit-closure under f We prove that α0 = sup A can be expressed in terms of the eigenvalues of f and that α0 ∈ A if and only if α0 < 1.


2021 ◽  
Vol 15 (1) ◽  
pp. 51-60
Author(s):  
Minh Hien Huynh ◽  
◽  
Van Nam Vo ◽  
Tinh Le ◽  
Thi Dai Trang Nguyen

This paper deals with clustering of periodic orbits of the hyperbolic toral automorphism induced by matrix A. We prove that Ta satisfies the Axiom A. The clustering of periodic orbits of Ta is ivestigated via the notion of 'p-closeness' of periodic sequences of the respective symbolic dynamical system. We also provide the number of clusters of periodic sequences with given periods in the case of 2-closeness.


2012 ◽  
Vol 34 (2) ◽  
pp. 457-482 ◽  
Author(s):  
MARCY BARGE ◽  
JEAN-MARC GAMBAUDO

AbstractGiven an n-dimensional substitution Φ whose associated linear expansion Λ is unimodular and hyperbolic, we use elements of the one-dimensional integer Čech cohomology of the tiling space ΩΦ to construct a finite-to-one semi-conjugacy G:ΩΦ→𝕋D, called a geometric realization, between the substitution induced dynamics and an invariant set of a hyperbolic toral automorphism. If Λ satisfies a Pisot family condition and the rank of the module of generalized return vectors equals the generalized degree of Λ, G is surjective and coincides with the map onto the maximal equicontinuous factor of the ℝn-action on ΩΦ. We are led to formulate a higher-dimensional generalization of the Pisot substitution conjecture: if Λ satisfies the Pisot family condition and the rank of the one-dimensional cohomology of ΩΦ equals the generalized degree of Λ, then the ℝn-action on ΩΦhas pure discrete spectrum.


Author(s):  
Philip Isett

This chapter deals with the gluing of solutions and the relevant theorem (Theorem 12.1), which states the condition for a Hölder continuous solution to exist. By taking a Galilean transformation if necessary, the solution can be assumed to have zero total momentum. The cut off velocity and pressure form a smooth solution to the Euler-Reynolds equations with compact support when coupled to a smooth stress tensor. The proof of Theorem (12.1) proceeds by iterating Lemma (10.1) just as in the proof of Theorem (10.1). Applying another Galilean transformation to return to the original frame of reference, the theorem is obtained.


2020 ◽  
Vol 17 (3) ◽  
pp. 414-436
Author(s):  
Evgeny Sevost'yanov ◽  
Serhii Skvortsov ◽  
Oleksandr Dovhopiatyi

As known, the modulus method is one of the most powerful research tools in the theory of mappings. Distortion of modulus has an important role in the study of conformal and quasiconformal mappings, mappings with bounded and finite distortion, mappings with finite length distortion, etc. In particular, an important fact is the lower distortion of the modulus under mappings. Such relations are called inverse Poletsky inequalities and are one of the main objects of our study. The use of these inequalities is fully justified by the fact that the inverse inequality of Poletsky is a direct (upper) inequality for the inverse mappings, if there exist. If the mapping has a bounded distortion, then the corresponding majorant in inverse Poletsky inequality is equal to the product of the maximum multiplicity of the mapping on its dilatation. For more general classes of mappings, a similar majorant is equal to the sum of the values of outer dilatations over all preimages of the fixed point. It the class of quasiconformal mappings there is no significance between the inverse and direct inequalities of Poletsky, since the upper distortion of the modulus implies the corresponding below distortion and vice versa. The situation significantly changes for mappings with unbounded characteristics, for which the corresponding fact does not hold. The most important case investigated in this paper refers to the situation when the mappings have an unbounded dilatation. The article investigates the local and boundary behavior of mappings with branching that satisfy the inverse inequality of Poletsky with some integrable majorant. It is proved that mappings of this type are logarithmically Holder continuous at each inner point of the domain. Note that the Holder continuity is slightly weaker than the classical Holder continuity, which holds for quasiconformal mappings. Simple examples show that mappings of finite distortion are not Lipschitz continuous even under bounded dilatation. Another subject of research of the article is boundary behavior of mappings. In particular, a continuous extension of the mappings with the inverse Poletsky inequality is obtained. In addition, we obtained the conditions under which the families of these mappings are equicontinuous inside and at the boundary of the domain. Several cases are considered: when the preimage of a fixed continuum under mappings is separated from the boundary, and when the mappings satisfy normalization conditions. The text contains a significant number of examples that demonstrate the novelty and content of the results. In particular, examples of mappings with branching that satisfy the inverse Poletsky inequality, have unbounded characteristics, and for which the statements of the basic theorems are satisfied, are given.


Sign in / Sign up

Export Citation Format

Share Document