Journal of the Egyptian Mathematical Society
Latest Publications


TOTAL DOCUMENTS

174
(FIVE YEARS 131)

H-INDEX

5
(FIVE YEARS 5)

Published By Egypts Presidential Specialized Council For Education And Scientific Research

2090-9128

2021 ◽  
Vol 29 (1) ◽  
Author(s):  
E. A. Abdel-Rehim

AbstractIn this review paper, I focus on presenting the reasons of extending the partial differential equations to space-time fractional differential equations. I believe that extending any partial differential equations or any system of equations to fractional systems without giving concrete reasons has no sense. The experiments agrees with the theoretical studies on extending the first order-time derivative to time-fractional derivative. The simulations of some processes also agrees with the theory of continuous time random walks for extending the second-order space fractional derivative to the Riesz–Feller fractional operators. For this aim, I give a condense review the theory of Brownian motion, Langevin equations, diffusion processes and the continuous time random walk. Some partial differential equations that are successfully extended to space-time-fractional differential equations are also presented.


2021 ◽  
Vol 29 (1) ◽  
Author(s):  
Prabhugouda Mallanagouda Patil ◽  
Madhavarao Kulkarni

AbstractThe present study focuses on double diffusive nonlinear (quadratic) mixed convective flow of nanoliquid about vertical wedge with nonlinear temperature-density-concentration variations. This study is found to be innovative and comprises the impacts of quadratic mixed convection, magnetohydrodynamics, diffusion of nanoparticles and liquid hydrogen flow around a wedge. Highly coupled nonlinear partial differential equations (NPDEs) and boundary constraints have been used to model the flow problem, which are then transformed into a dimensionless set of equations utilizing non-similar transformations. Further, a set of NPDEs would be linearized with the help of Quasilinearization technique, and then, the linear partial differential equations are transformed into a block tri-diagonal system through using implicit finite difference scheme, which is solved using Verga’s algorithm. The study findings were explored through graphs for the fluid velocity, temperature, concentration, nanoparticle volume fraction distributions and its corresponding gradients. One of the important results of this study is that the higher wedge angle values upsurge the friction between the particles of the fluid and the wedge surface. Rising Schmidt number declines the concentration distribution and enhances the magnitude of Sherwood number. Nanofluid’s temperature increases with varying applied magnetic field. The present study has notable applications in the designing and manufacturing of wedge-shaped materials in space aircrafts, construction of dams, thermal systems, oil and gas industries, etc.


2021 ◽  
Vol 29 (1) ◽  
Author(s):  
Mohamed S. M. Bahgat

AbstractIn this paper, we suggested and analyzed a new higher-order iterative algorithm for solving nonlinear equation $$g(x)=0$$ g ( x ) = 0 , $$g:{\mathbb {R}}\longrightarrow {\mathbb {R}}$$ g : R ⟶ R , which is free from derivative by using the approximate version of the first derivative, and we studied the basins of attraction for the proposed iterative algorithm to find complex roots of complex functions $$g:{\mathbb {C}}\longrightarrow {\mathbb {C}}$$ g : C ⟶ C . To show the effectiveness of the proposed algorithm for the real and the complex domains, the numerical results for the considered examples are given and graphically clarified. The basins of attraction of the existing methods and our algorithm are offered and compared to clarify their performance. The proposed algorithm satisfied the condition such that $$|x_{m}-\alpha |<1.0 \times 10^{-15}$$ | x m - α | < 1.0 × 10 - 15 , as well as the maximum number of iterations is less than or equal to 3, so the proposed algorithm can be applied to efficiently solve numerous type non-linear equations.


2021 ◽  
Vol 29 (1) ◽  
Author(s):  
G. N. Chhatria ◽  
Said R. Grace ◽  
John R. Graef

AbstractThe authors present necessary and sufficient conditions for the oscillation of a class of second order non-linear neutral dynamic equations with non-positive neutral coefficients by using Krasnosel’skii’s fixed point theorem on time scales. The nonlinear function may be strongly sublinear or strongly superlinear.


2021 ◽  
Vol 29 (1) ◽  
Author(s):  
O. M. Hollah

AbstractDepending on a field study for one of the largest iron and paints warehouses in Egypt, this paper presents a new multi-item periodic review inventory model considering the refunding quantity cost. Through this field study, we found that the inventory level is monitored periodically at equal time intervals. Returning a part of the goods that were previously ordered is permitted. Also, a shortage is permissible to occur despite having orders, and it is a combination of the backorder and lost sales. This model has been applied in both crisp and fuzzy environments since the fuzzy case is more suitable for real-life than crisp. The Lagrange multiplier technique is used for solving the restricted mathematical model. Here, the demand is a random variable that follows the normal distribution with zero lead-time. Finally, the model is followed by a real application to clarify the model and prove its efficiency.


2021 ◽  
Vol 29 (1) ◽  
Author(s):  
Owais Ahmad ◽  
Neyaz A. Sheikh ◽  
Mobin Ahmad

AbstractIn this article, we introduce the notion of nonuniform biorthogonal wavelets on positive half line. We first establish the characterizations for the translates of a single function to form the Riesz bases for their closed linear span. We provide the complete characterization for the biorthogonality of the translates of scaling functions of two nonuniform multiresolution analysis and the associated biorthogonal wavelet families in $$L^2({\mathbb {R}}^+)$$ L 2 ( R + ) . Furthermore, under the mild assumptions on the scaling functions and the corresponding wavelets associated with nonuniform multiresolution analysis, we show that the wavelets can generate Reisz bases.


2021 ◽  
Vol 29 (1) ◽  
Author(s):  
Roohi Laila ◽  
Dil Nawaz Khan Marwat ◽  
Azhar Ali

AbstractIn this paper, a model problem of viscous flow and heat transfer in a rectangular converging (diverging) channel has been investigated. The governing equations are presented in Cartesian Coordinates and consequently they are simplified and solved with perturbation and numerical methods. Initially, symmetrical solutions of the boundary value problem are found for the upper half of the channel. Later on, these solutions are extended to the lower half and then to the whole channel. The numerical and perturbation solutions are compared and exactly matched with each other for a small value of the parameters involved in the problem. It is also confirmed that the solutions for the converging/diverging channel are independent of the sign of m (the slope). Moreover, the skin friction coefficient and heat transfer at the upper wall are calculated and graphed against the existing parameters in different figures. It is observed that the heat transfer at walls is decreased (increased) with increasing $${c}_{1}$$ c 1 (thermal controlling parameter) for diverging (converging). It is also decreased against Pr (Prandtle number). For $${c}_{1}=0$$ c 1 = 0 , the temperature profiles may be exactly determined from the governing equations and the rate of heat transfer at the upper wall is $$\theta^{\prime } (1) = \frac{m}{{(1 + m^{2} )\tan^{ - 1} m}}$$ θ ′ ( 1 ) = m ( 1 + m 2 ) tan - 1 m . It is confirmed that the skin friction coefficient behaves linearly against Re* (modified Reynolds number) and it is increased with increasing of Re* (changed from negative to positive). Moreover, it is increased asymptotically against m and converges to a constant value i.e. zero.


2021 ◽  
Vol 29 (1) ◽  
Author(s):  
Neha K. Gadhvi

AbstractVarious types of censoring schemes basically type-I and type-II censoring schemes and their modified versions are used in life testing experiments. Most of the tests used in life testing experiments are based on a single sample. A joint censoring scheme is quite useful in conducting comparative life tests of products from different units within the same facility. In this article, we consider two exponential life time models under joint multiply type-II censoring scheme, which is a generalization of usual type-II censoring scheme, implemented on the two samples. We have considered maximum likelihood estimation and Bayesian estimation for estimating the reliability of the product under such a censoring scheme. The results are compared with the results obtained under usual type-II censoring scheme. In Bayes estimation the effect of prior parameters on mean life time and reliability of the product is discussed. We have used the local influence approach for identifying observations that strike a disproportionate effect in the maximum likelihood estimate of the reliability in the model. The life time data set of air-conditioning systems of two Boeing 720 jet airplanes “7914” and “7913” are used to apply the theory developed in the paper.


2021 ◽  
Vol 29 (1) ◽  
Author(s):  
Mayowa M. Ojo ◽  
B. Gbadamosi ◽  
Temitope O. Benson ◽  
O. Adebimpe ◽  
A. L. Georgina

AbstractLassa fever is a zoonotic disease spread by infected rodents known as multimammate rats. The disease has posed a significant and major health challenge in West African countries, including Nigeria. To have a deeper understanding of Lassa fever epidemiology in Nigeria, we present a deterministic dynamical model to study its dynamical transmission behavior in the population. To mimic the disease’s biological history, we divide the population into two groups: humans and rodents. We established the quantity known as reproduction number $${\mathcal {R}}_{0}$$ R 0 . The results show that if $${\mathcal {R}}_{0} <1$$ R 0 < 1 then the system is stable, otherwise it is unstable. The model fitting was performed using the nonlinear least square method on cumulative reported cases from Nigeria between 2018 and 2020 to obtain the best fit that describes the dynamics of this disease in Nigeria. In addition, sensitivity analysis was performed, and the numerical solution of the system was derived using an iterative scheme, the fifth-order Runge–Kutta method. Using different numeric values for each parameter, we investigate the effect of all highest sensitivity indices’ parameters on the population of infected humans and infected rodents. Our findings indicate that any control strategies and methods that reduce rodent populations and the risk of transmission from rodents to humans and rodents would aid in the population’s control of Lassa fever.


2021 ◽  
Vol 29 (1) ◽  
Author(s):  
Omima A. Abo-zaid ◽  
R. A. Mohamed ◽  
F. M. Hady ◽  
A. Mahdy

AbstractA steady MHD boundary layer flow of Powell–Eyring dusty nanofluid over a stretching surface with heat flux condition is studied numerically. It is assumed that the fluid is incompressible and the impacts of thermophoresis and Brownian motion are taken into regard. In addition, the Powell–Eyring terms are considered in the momentum boundary layer and thermal boundary layer. The dust particles are seen as to be having the same size and conform to the nanoparticles in a spherical shape. We obtain a system of ordinary differential equations that are suitable for analyzed numerically using the fourth-order Runge–Kutta method via software algebraic MATLAB by applying appropriate transformations to the system of the governing partial differential equations in our problem. There is perfect compatibility between the bygone and current results when comparing our numerical solutions with the available data for values of the selected parameters. This confirms the validity of the method used here and thus the validity of the results. The influence of some parameters on the boundary layer profiles (the velocity and temperature for the particle phase and fluid phase, and nanoparticle concentration) is discussed. The results of this study display that the profiles of the velocity for particle and fluid phases increase with increasing Powell–Eyring fluid parameter, but reduce with height in magnetic field values. Mass concentration of the dust particles decreases the temperature of both the particle and fluid phases. The results also indicate the concentration of nanoparticle contraction as Schmidt number increases.


Sign in / Sign up

Export Citation Format

Share Document