scholarly journals Local rigidity of certain partially hyperbolic actions of product type

2001 ◽  
Vol 21 (04) ◽  
Author(s):  
VIOREL NITICA ◽  
ANDREI TÖRÖK
2019 ◽  
Vol 2019 (751) ◽  
pp. 1-26
Author(s):  
Danijela Damjanović ◽  
Bassam Fayad

AbstractThe following dichotomy for affine \mathbb{Z}^{k} actions on the torus {\mathbb{T}}^{d}, k,d\in{\mathbb{N}}, is shown to hold: (i) The linear part of the action has no rank-one factors, and then the affine action is locally rigid. (ii) The linear part of the action has a rank-one factor, and then the affine action is locally rigid in a probabilistic sense if and only if the rank-one factors are trivial. Local rigidity in a probabilistic sense means that rigidity holds for a set of full measure of translation vectors in the rank-one factors.


2010 ◽  
Vol 4 (2) ◽  
pp. 271-327 ◽  
Author(s):  
Zhenqi Jenny Wang ◽  

2020 ◽  
Vol 108 (3-4) ◽  
pp. 462-464
Author(s):  
L. M. Lerman ◽  
K. N. Trifonov
Keyword(s):  

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Le Quang Ham ◽  
Nguyen Van The ◽  
Phuc D. Tran ◽  
Le Anh Vinh

AbstractLet {\mathcal{R}} be a finite valuation ring of order {q^{r}}. In this paper, we prove that for any quadratic polynomial {f(x,y,z)\in\mathcal{R}[x,y,z]} that is of the form {axy+R(x)+S(y)+T(z)} for some one-variable polynomials {R,S,T}, we have|f(A,B,C)|\gg\min\biggl{\{}q^{r},\frac{|A||B||C|}{q^{2r-1}}\bigg{\}}for any {A,B,C\subset\mathcal{R}}. We also study the sum-product type problems over finite valuation ring {\mathcal{R}}. More precisely, we show that for any {A\subset\mathcal{R}} with {|A|\gg q^{r-\frac{1}{3}}} then {\max\{|AA|,|A^{d}+A^{d}|\}}, {\max\{|A+A|,|A^{2}+A^{2}|\}}, {\max\{|A-A|,|AA+AA|\}\gg|A|^{\frac{2}{3}}q^{\frac{r}{3}}}, and {|f(A)+A|\gg|A|^{\frac{2}{3}}q^{\frac{r}{3}}} for any one variable quadratic polynomial f.


Sign in / Sign up

Export Citation Format

Share Document