scholarly journals Decay of correlations in suspension semi-flows of angle-multiplying maps

2008 ◽  
Vol 28 (1) ◽  
pp. 291-317 ◽  
Author(s):  
MASATO TSUJII

AbstractWe consider suspension semi-flows of angle-multiplying maps on the circle for Cr ceiling functions with r≥3. Under a Crgeneric condition on the ceiling function, we show that there exists a Hilbert space (anisotropic Sobolev space) contained in the L2 space such that the Perron–Frobenius operator for the time-t-map acts naturally on it and that the essential spectral radius of that action is bounded by the square root of the inverse of the minimum expansion rate. This leads to a precise description of decay of correlations. Furthermore, the Perron–Frobenius operator for the time-t-map is quasi-compact for a Cr open and dense set of ceiling functions.

Author(s):  
ABDELHADI ES-SARHIR

This paper deals with the regularity of an invariant measure μ associated to a class of generalized Ornstein–Uhlenbeck operators. Regularity here means that μ is absolutely continuous with respect to a properly chosen Gaussian reference measure σ on a separable Hilbert space H. Moreover, the square root of its Radon–Nikodym derivative ρ should belong to some directional Sobolev space [Formula: see text].


2014 ◽  
Vol 95 (109) ◽  
pp. 29-47 ◽  
Author(s):  
Abdullo Hayotov ◽  
Gradimir Milovanovic ◽  
Kholmat Shadimetov

We construct an optimal quadrature formula in the sense of Sard in the Hilbert space K2(P3). Using Sobolev?s method we obtain new optimal quadrature formula of such type and give explicit expressions for the corresponding optimal coefficients. Furthermore, we investigate order of the convergence of the optimal formula and prove an asymptotic optimality of such a formula in the Sobolev space L (3)2 (0, 1). The obtained optimal quadrature formula is exact for the trigonometric functions sin x, cos x and for constants. Also, we include a few numerical examples in order to illustrate the application of the obtained optimal quadrature formula.


2016 ◽  
Vol 23 (4) ◽  
pp. 615-622 ◽  
Author(s):  
Armen Sergeev

AbstractIn this paper, we give an interpretation of some classical objects of function theory in terms of Banach algebras of linear operators in a Hilbert space. We are especially interested in quasisymmetric homeomorphisms of the circle. They are boundary values of quasiconformal homeomorphisms of the disk and form a group ${\operatorname{QS}(S^{1})}$ with respect to composition. This group acts on the Sobolev space ${H^{1/2}_{0}(S^{1},\mathbb{R})}$ of half-differentiable functions on the circle by reparameterization. We give an interpretation of the group ${\operatorname{QS}(S^{1})}$ and the space ${H^{1/2}_{0}(S^{1},\mathbb{R})}$ in terms of noncommutative geometry.


1976 ◽  
Vol 17 (2) ◽  
pp. 158-160
Author(s):  
Guyan Robertson

In what follows, B(H) will denote the C*-algebra of all bounded linear operators on a Hilbert space H. Suppose we are given a C*-subalgebra A of B(H), which we shall suppose contains the identity operator 1. We are concerned with the existence of states f of B(H) which satisfy the following trace-like relation relative to A:Our first result shows the existence of states f satisfying (*), when A is the C*-algebra C*(x) generated by a normaloid operator × and the identity. This allows us to give simple proofs of some well-known results in operator theory. Recall that an operator × is normaloid if its operator norm equals its spectral radius.


1998 ◽  
Vol 10 (05) ◽  
pp. 705-721 ◽  
Author(s):  
Mauro Spera ◽  
Tilmann Wurzbacher

In this paper we apply the theory of quasi-free states of CAR algebras and Bogolubov automorphisms to give an alternative C*-algebraic construction of the Determinant and Pfaffian line bundles discussed by Pressley and Segal and by Borthwick. The basic property of the Pfaffian of being the holomorphic square root of the Determinant line bundle (after restriction from the Hilbert space Grassmannian to the Siegel manifold, or isotropic Grassmannian, consisting of all complex structures on an associated Hilbert space) is derived from a Fock–anti-Fock correspondence and an application of the Powers–Størmer purification procedure. A Borel–Weil type description of the infinite dimensional Spin c- representation is obtained, via a Shale–Stinespring implementation of Bogolubov transformations.


1995 ◽  
Vol 07 (06) ◽  
pp. 833-869 ◽  
Author(s):  
CARSTEN BINNENHEI

The implementation of non-surjective Bogoliubov transformations in Fock states over CAR algebras is investigated. Such a transformation is implementable by a Hilbert space of isometries if and only if the well-known Shale-Stinespring condition is met. In this case, the dimension of the implementing Hilbert space equals the square root of the Watatani index of the associated inclusion of CAR algebras, and both are determined by the Fredholm index of the corresponding one-particle operator. Explicit expressions for the implementing operators are obtained, and the connected components of the semigroup of implementable transformations are described.


1991 ◽  
Vol 11 (4) ◽  
pp. 757-767 ◽  
Author(s):  
David Ruelle

AbstractLet f be a piecewise monotone map of the interval [0,1] to itself, and g a function of bounded variation on [0, 1]. Hofbauer, Keller and Rychlik have studied operators on functions of bounded variation, whereAmong other things, they show that the essential spectral radius of is in many cases strictly smaller than the spectral radius; there exist therefore isolated eigenvalues of finite multiplicity. The purpose of the present paper is to prove similar results for a more general class of operators forming an algebra (and therefore containing sums of operators like ). An analogous extension was presented by Ruelle for operators associated with expanding maps.


1980 ◽  
Vol 21 (1) ◽  
pp. 75-79 ◽  
Author(s):  
G. J. Murphy ◽  
T. T. West

Let H be a Hilbert space and let B denote the Banach algebra of all bounded linear operators on H with K denoting the closed ideal of compact operators in B. If T ∈ B, σ(T) and r(T) will denote the spectrum and spectral radius of T, respectively, and π the canonical mapping of B onto the Calkin algebra B/K.


Sign in / Sign up

Export Citation Format

Share Document