asymptotic optimality
Recently Published Documents


TOTAL DOCUMENTS

384
(FIVE YEARS 60)

H-INDEX

32
(FIVE YEARS 5)

2022 ◽  
pp. 096228022110417
Author(s):  
Kian Wee Soh ◽  
Thomas Lumley ◽  
Cameron Walker ◽  
Michael O’Sullivan

In this paper, we present a new model averaging technique that can be applied in medical research. The dataset is first partitioned by the values of its categorical explanatory variables. Then for each partition, a model average is determined by minimising some form of squared errors, which could be the leave-one-out cross-validation errors. From our asymptotic optimality study and the results of simulations, we demonstrate under several high-level assumptions and modelling conditions that this model averaging procedure may outperform jackknife model averaging, which is a well-established technique. We also present an example where a cross-validation procedure does not work (that is, a zero-valued cross-validation error is obtained) when determining the weights for model averaging.


Author(s):  
Xi Chen ◽  
Yunxiao Chen ◽  
Xiaoou Li

A sequential design problem for rank aggregation is commonly encountered in psychology, politics, marketing, sports, etc. In this problem, a decision maker is responsible for ranking K items by sequentially collecting noisy pairwise comparisons from judges. The decision maker needs to choose a pair of items for comparison in each step, decide when to stop data collection, and make a final decision after stopping based on a sequential flow of information. Because of the complex ranking structure, existing sequential analysis methods are not suitable. In this paper, we formulate the problem under a Bayesian decision framework and propose sequential procedures that are asymptotically optimal. These procedures achieve asymptotic optimality by seeking a balance between exploration (i.e., finding the most indistinguishable pair of items) and exploitation (i.e., comparing the most indistinguishable pair based on the current information). New analytical tools are developed for proving the asymptotic results, combining advanced change of measure techniques for handling the level crossing of likelihood ratios and classic large deviation results for martingales, which are of separate theoretical interest in solving complex sequential design problems. A mirror-descent algorithm is developed for the computation of the proposed sequential procedures.


2021 ◽  
Author(s):  
David B. Brown ◽  
Jingwei Zhang

Allocating Resources Across Systems Coupled by Shared Information Many sequential decision problems involve repeatedly allocating a limited resource across subsystems that are jointly affected by randomly evolving exogenous factors. For example, in adaptive clinical trials, a decision maker needs to allocate patients to treatments in an effort to learn about the efficacy of treatments, but the number of available patients may vary randomly over time. In capital budgeting problems, firms may allocate resources to conduct R&D on new products, but funding budgets may evolve randomly. In many inventory management problems, firms need to allocate limited production capacity to satisfy uncertain demands at multiple locations, and these demands may be correlated due to vagaries in shared market conditions. In this paper, we develop a model involving “shared resources and signals” that captures these and potentially many other applications. The framework is naturally described as a stochastic dynamic program, but this problem is quite difficult to solve. We develop an approximation method based on a “dynamic fluid relaxation”: in this approximation, the subsystem state evolution is approximated by a deterministic fluid model, but the exogenous states (the signals) retain their stochastic evolution. We develop an algorithm for solving the dynamic fluid relaxation. We analyze the corresponding feasible policies and performance bounds from the dynamic fluid relaxation and show that these are asymptotically optimal as the number of subsystems grows large. We show that competing state-of-the-art approaches used in the literature on weakly coupled dynamic programs in general fail to provide asymptotic optimality. Finally, we illustrate the approach on the aforementioned dynamic capital budgeting and multilocation inventory management problems.


Author(s):  
Savas Dayanik ◽  
Kazutoshi Yamazaki

AbstractThis paper revisits a unified framework of sequential change-point detection and hypothesis testing modeled using hidden Markov chains and develops its asymptotic theory. Given a sequence of observations whose distributions are dependent on a hidden Markov chain, the objective is to quickly detect critical events, modeled by the first time the Markov chain leaves a specific set of states, and to accurately identify the class of states that the Markov chain enters. We propose computationally tractable sequential detection and identification strategies and obtain sufficient conditions for the asymptotic optimality in two Bayesian formulations. Numerical examples are provided to confirm the asymptotic optimality.


Author(s):  
David P. Bourne ◽  
Riccardo Cristoferi

AbstractWe prove an asymptotic crystallization result in two dimensions for a class of nonlocal particle systems. To be precise, we consider the best approximation with respect to the 2-Wasserstein metric of a given absolutely continuous probability measure $$f \mathrm {d}x$$ f d x by a discrete probability measure $$\sum _i m_i \delta _{z_i}$$ ∑ i m i δ z i , subject to a constraint on the particle sizes $$m_i$$ m i . The locations $$z_i$$ z i of the particles, their sizes $$m_i$$ m i , and the number of particles are all unknowns of the problem. We study a one-parameter family of constraints. This is an example of an optimal location problem (or an optimal sampling or quantization problem) and it has applications in economics, signal compression, and numerical integration. We establish the asymptotic minimum value of the (rescaled) approximation error as the number of particles goes to infinity. In particular, we show that for the constrained best approximation of the Lebesgue measure by a discrete measure, the discrete measure whose support is a triangular lattice is asymptotically optimal. In addition, we prove an analogous result for a problem where the constraint is replaced by a penalization. These results can also be viewed as the asymptotic optimality of the hexagonal tiling for an optimal partitioning problem. They generalise the crystallization result of Bourne et al. (Commun Math Phys, 329: 117–140, 2014) from a single particle system to a class of particle systems, and prove a case of a conjecture by Bouchitté et al. (J Math Pures Appl, 95:382–419, 2011). Finally, we prove a crystallization result which states that optimal configurations with energy close to that of a triangular lattice are geometrically close to a triangular lattice.


2021 ◽  
pp. 1-43
Author(s):  
Ji Hyung Lee ◽  
Youngki Shin

We propose a novel conditional quantile prediction method based on complete subset averaging (CSA) for quantile regressions. All models under consideration are potentially misspecified, and the dimension of regressors goes to infinity as the sample size increases. Since we average over the complete subsets, the number of models is much larger than the usual model averaging method which adopts sophisticated weighting schemes. We propose to use an equal weight but select the proper size of the complete subset based on the leave-one-out cross-validation method. Building upon the theory of Lu and Su (2015, Journal of Econometrics 188, 40–58), we investigate the large sample properties of CSA and show the asymptotic optimality in the sense of Li (1987, Annals of Statistics 15, 958–975) We check the finite sample performance via Monte Carlo simulations and empirical applications.


Author(s):  
Zhongshun Shi ◽  
Yijie Peng ◽  
Leyuan Shi ◽  
Chun-Hung Chen ◽  
Michael C. Fu

Monte Carlo simulation is a commonly used tool for evaluating the performance of complex stochastic systems. In practice, simulation can be expensive, especially when comparing a large number of alternatives, thus motivating the need to intelligently allocate simulation replications. Given a finite set of alternatives whose means are estimated via simulation, we consider the problem of determining the subset of alternatives that have means smaller than a fixed threshold. A dynamic sampling procedure that possesses not only asymptotic optimality, but also desirable finite-sample properties is proposed. Theoretical results show that there is a significant difference between finite-sample optimality and asymptotic optimality. Numerical experiments substantiate the effectiveness of the new method. Summary of Contribution: Simulation is an important tool to estimate the performance of complex stochastic systems. We consider a feasibility determination problem of identifying all those among a finite set of alternatives with mean smaller than a given threshold, in which the means are unknown but can be estimated by sampling replications via stochastic simulation. This problem appears widely in many applications, including call center design and hospital resource allocation. Our work considers how to intelligently allocate simulation replications to different alternatives for efficiently finding the feasible alternatives. Previous work focuses on the asymptotic properties of the sampling allocation procedures, whereas our contribution lies in developing a finite-budget allocation rule that possesses both asymptotic optimality and desirable finite-budget properties.


2021 ◽  
Author(s):  
Jing Fu ◽  
Bill Moran ◽  
Peter G. Taylor

In “A Restless Bandit Model for Resource Allocation, Competition and Reservation,” J. Fu, B. Moran, and P. G. Taylor study a resource allocation problem with varying requests and with resources of limited capacity shared by multiple requests. This problem is modeled as a set of heterogeneous restless multi-armed bandit problems (RMABPs) connected by constraints imposed by resource capacity. Following Whittle’s idea of relaxing the constraints and Weber and Weiss’s proof of asymptotic optimality, the authors propose an index policy and establish conditions for it to be asymptotically optimal in a regime where both arrival rates and capacities increase. In particular, they provide a simple sufficient condition for asymptotic optimality of the policy and, in complete generality, propose a method that generates a set of candidate policies for which asymptotic optimality can be checked. Via numerical experiments, they demonstrate the effectiveness of these results even in the pre-limit case.


Sign in / Sign up

Export Citation Format

Share Document