Spectral properties of a class of operators associated with maps in one dimension

1991 ◽  
Vol 11 (4) ◽  
pp. 757-767 ◽  
Author(s):  
David Ruelle

AbstractLet f be a piecewise monotone map of the interval [0,1] to itself, and g a function of bounded variation on [0, 1]. Hofbauer, Keller and Rychlik have studied operators on functions of bounded variation, whereAmong other things, they show that the essential spectral radius of is in many cases strictly smaller than the spectral radius; there exist therefore isolated eigenvalues of finite multiplicity. The purpose of the present paper is to prove similar results for a more general class of operators forming an algebra (and therefore containing sums of operators like ). An analogous extension was presented by Ruelle for operators associated with expanding maps.

Author(s):  
H. R. Pitt

1. We write L for the class of integrable functions in (− ∞, ∞), V for the class of functions of bounded variation, and define A, A to be the classes of functions F(x) which may be expressed in the formsrespectively.


2012 ◽  
Vol 2012 ◽  
pp. 1-20
Author(s):  
Ying Mei ◽  
Dansheng Yu

By adopting some new ideas, we obtain the estimates of an absolute convergence for the functions of the bounded variation in two variables. Our results generalize the related results of Humphreys and Bojanic (1999) and Wang and Yu (2003) from one dimension to two dimensions and can be applied to several summability methods.


1964 ◽  
Vol 16 ◽  
pp. 479-484 ◽  
Author(s):  
R. G. Laha

Let F1(x) and F2(x) be two distribution functions, that is, non-decreasing, right-continuous functions such that Fj(— ∞) = 0 and Fj(+ ∞) = 1 (j = 1, 2). We denote their convolution by F(x) so thatthe above integrals being defined as the Lebesgue-Stieltjes integrals. Then it is easy to verify (2, p. 189) that F(x) is a distribution function. Let f1(t), f2(t), and f(t) be the corresponding characteristic functions, that is,


1965 ◽  
Vol 14 (3) ◽  
pp. 211-219 ◽  
Author(s):  
W. H. Ingram

The basic reciprocity of j-differential and LM-integralfor bounded functions f(x) with simple discontinuities but continuous on the left at each point and for g(x) in the somewhat restricted class B of functions of bounded variation and also left-continuous, was established in (2) and (3); the dot here indicates the lower product of and (jg, g+ (x+)dx), with , and the integral indicated is the RJDS-integral, equivalent to (LM) .


2021 ◽  
Vol 27 (2) ◽  
Author(s):  
Elena E. Berdysheva ◽  
Nira Dyn ◽  
Elza Farkhi ◽  
Alona Mokhov

AbstractWe introduce and investigate an adaptation of Fourier series to set-valued functions (multifunctions, SVFs) of bounded variation. In our approach we define an analogue of the partial sums of the Fourier series with the help of the Dirichlet kernel using the newly defined weighted metric integral. We derive error bounds for these approximants. As a consequence, we prove that the sequence of the partial sums converges pointwisely in the Hausdorff metric to the values of the approximated set-valued function at its points of continuity, or to a certain set described in terms of the metric selections of the approximated multifunction at a point of discontinuity. Our error bounds are obtained with the help of the new notions of one-sided local moduli and quasi-moduli of continuity which we discuss more generally for functions with values in metric spaces.


Symmetry ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 990
Author(s):  
Silvestru Sever Dragomir

In this paper, we provide several bounds for the modulus of the complex Čebyšev functional. Applications to the trapezoid and mid-point inequalities, that are symmetric inequalities, are also provided.


Author(s):  
Emilio Acerbi ◽  
Domenico Mucci

We consider the total curvature of graphs of curves in high-codimension Euclidean space. We introduce the corresponding relaxed energy functional and prove an explicit representation formula. In the case of continuous Cartesian curves, i.e. of graphs cu of continuous functions u on an interval, we show that the relaxed energy is finite if and only if the curve cu has bounded variation and finite total curvature. In this case, moreover, the total curvature does not depend on the Cantor part of the derivative of u. We treat the wider class of graphs of one-dimensional functions of bounded variation, and we prove that the relaxed energy is given by the sum of the length and total curvature of the new curve obtained by closing the holes in cu generated by jumps of u with vertical segments.


2018 ◽  
Vol 68 (5) ◽  
pp. 1097-1112 ◽  
Author(s):  
Feng Liu

Abstract In this paper we investigate the regularity properties of one-sided fractional maximal functions, both in continuous case and in discrete case. We prove that the one-sided fractional maximal operators $ \mathcal{M}_{\beta}^{+} $ and $ \mathcal{M}_{\beta}^{-} $ map $ W^{1,p}(\mathbb{R}) $ into $ W^{1,q}(\mathbb{R}) $ with 1 <p <∞, 0≤β<1/p and q=p/(1-pβ), boundedly and continuously. In addition, we also obtain the sharp bounds and continuity for the discrete one-sided fractional maximal operators $ M_{\beta}^{+} $ and $ M_{\beta}^{-} $ from $ \ell^{1}(\mathbb{Z}) $ to $ {\rm BV}(\mathbb{Z}) $. Here $ {\rm BV}(\mathbb{Z}) $ denotes the set of all functions of bounded variation defined on ℤ. The results we obtained represent significant and natural extensions of what was known previously.


Sign in / Sign up

Export Citation Format

Share Document