scholarly journals m = 1 Oscillations of Accretion Disks in Close Binary Systems

1997 ◽  
Vol 163 ◽  
pp. 777-778
Author(s):  
Atsuo T. Okazaki

AbstractWe examine the two-dimensional structure of m = 1 modes in disks around white dwarfs in close binary systems. We find that the odd modes (warping modes) as well as even modes (eccentric modes) are confined to the outermost part of the disk. The period of the fundamental mode is of a few percent of the binary period, and is insensitive to the parity of the mode. These modes naturally explain the superhump periods of SU UMa stars.

1979 ◽  
Vol 53 ◽  
pp. 533-533
Author(s):  
Masayuki Y. Fujimoto

Recent observations have revealed the existence of infrared brightening in some nova explosions, and its absence in others. These infrared excesses are ascribed to thermal emission from grains which are considered to consist of graphite. Such nova explosions are widely accepted to be triggered by hydrogen shell-flashes on the surface of white dwarfs which accrete matter in close binary systems. As for the hydrogen shell-flash, recently, a general theory applicable even to the case of finite amplitude has been developed. According to this theory, the progress of a shell-flash is determined only by the mass of the white dwarf MWD and the mass of the accreted hydrogen-rich envelope ΔMH.


1982 ◽  
Vol 69 ◽  
pp. 219-230 ◽  
Author(s):  
G. Hensler

AbstractA numerical method for 3D magnetohydrodynamical investigations of accretion disks in close binary systems is presented, which allows for good spatial resolution of structures (hot spot, accretion column). The gas is treated as individual gas cells (pseudo-particles) whose motion is calculated within a grid consisting of one spherical inner part for 3D MHD and two plane outer parts. Viscous interactions of the gas cells are taken into account by a special treatment connected with the grid geometry.We present one result of 2D hydrodynamical calculations for a binary applying the following parameters which are representative for Cataclysmic Variables: M1 = 1 Mʘ, r1 = 10-2 Rʘ, M2 = 0.5 Mʘ, p = 0.2 d, M = 10-9 Mʘ y-1.Column density and radiative flux distributions over the disk are shown and briefly discussed by comparison with the theoretical understanding of these Dwarf Novae drawn from observations.


Sign in / Sign up

Export Citation Format

Share Document