point correlation function
Recently Published Documents


TOTAL DOCUMENTS

346
(FIVE YEARS 68)

H-INDEX

37
(FIVE YEARS 7)

2021 ◽  
Vol 922 (1) ◽  
pp. 59
Author(s):  
Fei Qin ◽  
David Parkinson ◽  
Cullan Howlett ◽  
Khaled Said

Abstract Measurements of cosmic flows enable us to test whether cosmological models can accurately describe the evolution of the density field in the nearby universe. In this paper, we measure the low-order kinematic moments of the cosmic flow field, namely bulk flow and shear moments, using the Cosmicflows-4 Tully−Fisher catalog (CF4TF). To make accurate cosmological inferences with the CF4TF sample, it is important to make realistic mock catalogs. We present the mock sampling algorithm of CF4TF. These mocks can accurately realize the survey geometry and luminosity selection function, enabling researchers to explore how these systematics affect the measurements. These mocks can also be further used to estimate the covariance matrix and errors of the power spectrum and two-point correlation function in future work. In this paper, we use the mocks to test the cosmic flow estimator and find that the measurements are unbiased. The measured bulk flow in the local universe is 376 ± 23 (error) ± 183 (cosmic variance) km s−1 at depth d MLE = 35 Mpc h −1, to the Galactic direction of (l, b) = (298° ± 3°, −6° ± 3°). Both the measured bulk and shear moments are consistent with the concordance Λ Cold Dark Matter cosmological model predictions.


2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Alessio Squarcini

Abstract We consider near-critical two-dimensional statistical systems with boundary conditions inducing phase separation on the strip. By exploiting low-energy properties of two-dimensional field theories, we compute arbitrary n-point correlation of the order parameter field. Finite-size corrections and mixed correlations involving the stress tensor trace are also discussed. As an explicit illustration of the technique, we provide a closed-form expression for a three-point correlation function and illustrate the explicit form of the long-ranged interfacial fluctuations as well as their confinement within the interfacial region.


Symmetry ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2014
Author(s):  
André LeClair

In previous work, it was shown that if certain series based on sums over primes of non-principal Dirichlet characters have a conjectured random walk behavior, then the Euler product formula for its L-function is valid to the right of the critical line ℜ(s)>12, and the Riemann hypothesis for this class of L-functions follows. Building on this work, here we propose how to extend this line of reasoning to the Riemann zeta function and other principal Dirichlet L-functions. We apply these results to the study of the argument of the zeta function. In another application, we define and study a one-point correlation function of the Riemann zeros, which leads to the construction of a probabilistic model for them. Based on these results we describe a new algorithm for computing very high Riemann zeros, and we calculate the googol-th zero, namely 10100-th zero to over 100 digits, far beyond what is currently known. Of course, use is made of the symmetry of the zeta function about the critical line.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Rajesh Kumar Gupta ◽  
Augniva Ray ◽  
Karunava Sil

Abstract We compute the partition function of $$ \mathcal{N} $$ N = 2 supersymmetric mixed dimensional QED on a squashed hemisphere using localization. Mixed dimensional QED is an abelian gauge theory coupled to charged matter fields at the boundary. The partition function is a function of the complex gauge coupling τ, the choice of R-symmetry and the squashing deformation. The superconformal R-symmetry is determined using the 3-dimensional F-maximization. The free energy as a function of squashing deformation allows computing correlation functions that contain the insertion of the energy-momentum tensor. We compute the 2-point correlation function of the energy-momentum tensor of 3-dimensional theory by differentiating the free energy with respect to the squashing parameter. We comment on the behaviour of the 2-point function as we change the complex coupling τ.


2021 ◽  
Vol 81 (5) ◽  
Author(s):  
Yong-Jiang Xu ◽  
Yong-Lu Liu ◽  
Ming-Qiu Huang

AbstractIn this paper, we tentatively assign the $$P_{c}(4312)$$ P c ( 4312 ) to be a $$\bar{D}\Sigma _{c}$$ D ¯ Σ c molecular state with quantum number $$J^{P}=\frac{1}{2}^{-}$$ J P = 1 2 - , and calculate its magnetic moment using the QCD sum rule method in external weak electromagnetic field. Starting with the two-point correlation function in external electromagnetic field and expanding it in power of the electromagnetic interaction Hamiltonian, we extract the magnetic moment from the linear response to the external electromagnetic field. The numerical value of the magnetic moment of $$P_{c}(4312)$$ P c ( 4312 ) is $$\mu _{P_{c}}=1.75^{+0.15}_{-0.11}$$ μ P c = 1 . 75 - 0.11 + 0.15 .


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Soumangsu Chakraborty

Abstract In this paper we prove the equivalence among (i) the weakly coupled worldsheet string theory described by the coset sigma model $$ \frac{\mathrm{SL}{\left(2,\mathrm{\mathbb{R}}\right)}_k\times \mathrm{U}(1)}{\mathrm{U}(1)} $$ SL 2 ℝ k × U 1 U 1 × S3 × T4 with SL(2, ℝ) WZW level k ≥ 2, (ii) the full near horizon theory of the NS5 branes with k NS5 branes wrapping T4 × S1, p » 1 F1 strings wrapping S1 and n units of momentum along the S1 and (iii) the single trace $$ T\overline{T} $$ T T ¯ deformation of string theory in AdS3 × S3 × T4. As a check we compute the spectrum (continuous) of the spacetime theory by performing BRST quantization of the coset description of the worldsheet theory and show that it matches exactly with the one derived in the case of single trace $$ T\overline{T} $$ T T ¯ deformed string theory in AdS3. Secondly, we compute the two-point correlation function of local operators of the spacetime theory using the worldsheet coset approach and reproduce the same two-point function from the supergravity approach.


2021 ◽  
Vol 503 (2) ◽  
pp. 2318-2339 ◽  
Author(s):  
César Hernández-Aguayo ◽  
Francisco Prada ◽  
Carlton M Baugh ◽  
Anatoly Klypin

ABSTRACT Upcoming surveys will use a variety of galaxy selections to map the large-scale structure of the Universe. It is important to make accurate predictions for the properties and clustering of such galaxies, including the errors on these statistics. Here, we describe a novel technique which uses the semi-analytical model of galaxy formation galform, embedded in the high-resolution N-body Planck-Millennium simulation, to populate a thousand halo catalogues generated using the Parallel-PM N-body glam code. Our hybrid scheme allows us to make clustering predictions on scales that cannot be modelled in the original N-body simulation. We focus on luminous red galaxies (LRGs) selected in the redshift range z = 0.6 − 1 from the galform output using similar colour-magnitude cuts in the r, z, and W1 bands to those that will be applied in the Dark Energy Spectroscopic Instrument (DESI) survey, and call this illustrative sample ‘DESI-like’ LRGs. We find that the LRG-halo connection is non-trivial, leading to the prediction of a non-standard halo occupation distribution; in particular, the occupation of central galaxies does not reach unity for the most massive haloes, and drops with increasing mass. The glam catalogues reproduce the abundance and clustering of the LRGs predicted by galform. We use the glam mocks to compute the covariance matrices for the two-point correlation function and power spectrum of the LRGs and their background dark matter density field, revealing important differences. We also make predictions for the linear-growth rate and the baryon acoustic oscillations distances at z = 0.6, 0.74, and 0.93. All ‘DESI-like’ LRG catalogues are made publicly available.


Sign in / Sign up

Export Citation Format

Share Document