An alternative method for linear programming

Author(s):  
E. M. L. Beale

ABSTRACTThe method of leading variables is presented as a new method of solving Linear Programming, and is compared with the Simplex and the Dual Simplex methods.

2012 ◽  
Vol 60 (2) ◽  
pp. 223-230
Author(s):  
H.K. Das ◽  
M. Babul Hasan

In this paper, a new method is proposed for solving the problem in which the objective function is a linear fractional Bounded Variable (LFBV) function, where the constraints functions are in the form of linear inequalities and the variables are bounded. The proposed method mainly based upon the primal dual simplex algorithm. The Linear Programming Bounded Variables (LPBV) algorithm is extended to solve Linear Fractional Bounded Variables (LFBV).The advantages of LFBV algorithm are simplicity of implementation and less computational effort. We also compare our result with programming language MATHEMATICA.DOI: http://dx.doi.org/10.3329/dujs.v60i2.11522 Dhaka Univ. J. Sci. 60(2): 223-230, 2012 (July) 


Author(s):  
Naima El Ghandour ◽  
Moussa Benaissa ◽  
Yahia Lebbah

The Semantic Web uses ontologies to cope with the data heterogeneity problem. However, ontologies become themselves heterogeneous; this heterogeneity may occur at the syntactic, terminological, conceptual, and semantic levels. To solve this problem, alignments between entities of ontologies must be identified. This process is called ontology matching. In this paper, the authors propose a new method to extract alignment with multiple cardinalities using integer linear programming techniques. The authors conducted a series of experiments and compared them with currently used methods. The obtained results show the efficiency of the proposed method.


Author(s):  
Sarmad H. Ali ◽  
Osamah A. Ali ◽  
Samir C. Ajmi

In this research, we are trying to solve Simplex methods which are used for successively improving solution and finding the optimal solution, by using different types of methods Linear, the concept of linear separation is widely used in the study of machine learning, through this study we will find the optimal method to solve by comparing the time consumed by both Quadric and Fisher methods.


Author(s):  
Shyh-Chour Huang ◽  
Chien-Ching Chiu

The objective of this paper describes a new method to design a micro-gripper. In the paper, we use compliant mechanism actuated by micro combined V-shape electrothermal actuator to design a microgripper that the claw can clip the micro object. The compliant mechanism employs flexible to generate movement without any hinge; therefore, it is suitable for MEMS manufacture. The design of micro-gripper is accomplished in compliant mechanism with topology optimum and solved by sequential linear programming (SLP) methods. The design considerations, the analysis method, and the design results are discussed.


Author(s):  
Seyed Hadi Nasseri ◽  
Ali Ebrahimnejad

In the real word, there are many problems which have linear programming models and sometimes it is necessary to formulate these models with parameters of uncertainty. Many numbers from these problems are linear programming problems with fuzzy variables. Some authors considered these problems and have developed various methods for solving these problems. Recently, Mahdavi-Amiri and Nasseri (2007) considered linear programming problems with trapezoidal fuzzy data and/or variables and stated a fuzzy simplex algorithm to solve these problems. Moreover, they developed the duality results in fuzzy environment and presented a dual simplex algorithm for solving linear programming problems with trapezoidal fuzzy variables. Here, the authors show that this presented dual simplex algorithm directly using the primal simplex tableau algorithm tenders the capability for sensitivity (or post optimality) analysis using primal simplex tableaus.


2014 ◽  
Vol 672-674 ◽  
pp. 1968-1971
Author(s):  
Xue Tong ◽  
Jun Qiang Wei

This paper defines the projection of algebic systems, and studies the projecting algorithm for linear systems. As its application, a new method is given to solve linear programming problems, which is called reduction-by-projection method. For many problems, especially when the problems have many constraint conditions in comparison with the number of their variables, the method needs less computation than simplex method and others. The great advantage of the method is shown when solving the integer linear programming problems.


Sign in / Sign up

Export Citation Format

Share Document