Orthomorphisms of archimedean vector lattices

Author(s):  
S. J. Bernau

AbstractA linear operator T on a vector lattice L preserves disjointness if Tx ⊥ y whenever x ⊥ y. If such a T is positive it is automatically order bounded. An ortho-morphism is an order bounded disjointness preserving linear operator on L. In this note we show that the theory of orthomorphisms on archimedean vector lattices admits a totally elementary exposition. Elementary methods are also effective in duality considerations when the order dual separates points of L. For the Jordan decomposition T = T+ − T− with T+x = (Tx+)+ − (Tx−)+ we can dtrop the order boundedness assumption if we assume either that T preserves ideals or that L is normed and T is continuous. Alternatively we may keep order boundedness and assume only |Tx| ⊥ |Ty| whenever x ⊥ y. The main duality results show: T preserves ideals if and only if T** does; T is an orthomorphism if and only if T* is; T is central (|T| is bounded by a multiple of the identity) if and only if T* is central if and only if T and T* preserve ideals.

Author(s):  
P. T. N. McPolin ◽  
A. W. Wickstead

1. Introduction. A linear operator T on a vector lattice is band preserving if x⊥ y implies Tx ⊥ y. Much is known about the order bounded band preserving operators on an Archimedean vector lattice. The collection of all of these forms an Abelian algebra under composition and a vector lattice for the operator order (see [7], [8] and [13] amongst others). Very little appears to be known about band preserving operators which are not order bounded apart from some isolated examples ([11], [13], [1] and [17]) and some non-existence results ([11] and [1]).


2021 ◽  
Vol 15 (3) ◽  
Author(s):  
Yang Deng ◽  
Marcel de Jeu

AbstractFor vector lattices E and F, where F is Dedekind complete and supplied with a locally solid topology, we introduce the corresponding locally solid absolute strong operator topology on the order bounded operators $${\mathscr{L}}_{\mathrm{ob}}(E,F)$$ L ob ( E , F ) from E into F. Using this, it follows that $${\mathscr{L}}_{\mathrm{ob}}(E,F)$$ L ob ( E , F ) admits a Hausdorff uo-Lebesgue topology whenever F does. For each of order convergence, unbounded order convergence, and—when applicable—convergence in the Hausdorff uo-Lebesgue topology, there are both a uniform and a strong convergence structure on $${\mathscr{L}}_{\mathrm{ob}}(E,F)$$ L ob ( E , F ) . Of the six conceivable inclusions within these three pairs, only one is generally valid. On the orthomorphisms of a Dedekind complete vector lattice, however, five are generally valid, and the sixth is valid for order bounded nets. The latter condition is redundant in the case of sequences of orthomorphisms, as a consequence of a uniform order boundedness principle for orthomorphisms that we establish. We furthermore show that, in contrast to general order bounded operators, orthomorphisms preserve not only order convergence of nets, but unbounded order convergence and—when applicable—convergence in the Hausdorff uo-Lebesgue topology as well.


Author(s):  
M.A. Pliev

{In this paper we continue a study of relationships between the lateral partial order $\sqsubseteq$ in a vector lattice (the relation $x \sqsubseteq y$ means that $x$ is a fragment of $y$) and the theory of orthogonally additive operators on vector lattices. It was shown in~\cite{pMPP} that the concepts of lateral ideal and lateral band play the same important role in the theory of orthogonally additive operators as ideals and bands play in the theory for linear operators in vector lattices. We show that, for a vector lattice $E$ and a lateral band $G$ of~$E$, there exists a vector lattice~$F$ and a positive, disjointness preserving orthogonally additive operator $T \colon E \to F$ such that ${\rm ker} \, T = G$. As a consequence, we partially resolve the following open problem suggested in \cite{pMPP}: Are there a vector lattice~$E$ and a lateral ideal in $E$ which is not equal to the kernel of any positive orthogonally additive operator $T\colon E\to F$ for any vector lattice $F$?


1971 ◽  
Vol 5 (3) ◽  
pp. 331-335 ◽  
Author(s):  
Roger D. Bleier

We show that each archimedean lattice-ordered group is contained in a unique (up to isomorphism) minimal archimedean vector lattice. This improves a result of Paul F. Conrad appearing previously in this Bulletin. Moreover, we show that this relationship between archimedean lattice-ordered groups and archimedean vector lattices is functorial.


1959 ◽  
Vol 11 ◽  
pp. 286-296 ◽  
Author(s):  
Solomon Leader

Spectral theory in its lattice-theoretic setting proves abstractly that the indicators of measurable sets generate the space L of Lebesgue-integrable functions on an interval. We are concerned here with abstractions suggested by the fact that indicators of intervals suffice to generate L. Our results show that the approximation of arbitrary elements of a topological vector lattice rests upon the ability to separate disjoint elements/ and g by an operation that behaves in the limit like a projection annihilating/ and leaving g invariant.The introduction of this concept of separation together with the notion of limit unit leads (via the Fundamental Lemma) to abstract generalizations of the Radon-Nikodym Theorem (Theorem 1) and the Stone-Weierstrass Theorem (Theorem 3).


Author(s):  
Richard N. Ball ◽  
Anthony W. Hager

AbstractIn the category W of archimedean l–groups with distinguished weak order unit, with unitpreserving l–homorphism, let B be the class of W-objects of the form D(X), with X basically disconnected, or, what is the same thing (we show), the W-objects of the M/N, where M is a vector lattice of measurable functions and N is an abstract ideal of null functions. In earlier work, we have characterized the epimorphisms in W, and shown that an object G is epicomplete (that is, has no proper epic extension) if and only if G ∈ B. This describes the epicompletetions of a give G (that is, epicomplete objects epically containing G). First, we note that an epicompletion of G is just a “B-completion”, that is, a minimal extension of G by a B–object, that is, by a vector lattice of measurable functions modulo null functions. (C[0, 1] has 2c non-eqivalent such extensions.) Then (we show) the B–completions, or epicompletions, of G are exactly the quotients of the l–group B(Y(G)) of real-valued Baire functions on the Yosida space Y(G) of G, by σ-ideals I for which G embeds naturally in B(Y(G))/I. There is a smallest I, called N(G), and over the embedding G ≦ B(Y(G))/N(G) lifts any homorphism from G to a B–object. (The existence, though not the nature, of such a “reflective” epicompletion was first shown by Madden and Vermeer, using locales, then verified by us using properties of the class B.) There is a unique maximal (not maximum) such I, called M(Y(G)), and B(Y(G))/M(Y(G)) is the unique essentialBcompletion. There is an intermediate σ -ideal, called Z(Y(G)), and the embedding G ≦ B(y(G))/Z(Y(G)) is a σ-embedding, and functorial for σ -homomorphisms. The sistuation stands in strong analogy to the theory in Boolean algebras of free σ -algebras and σ -extensions, though there are crucial differences.


1968 ◽  
Vol 20 ◽  
pp. 58-66 ◽  
Author(s):  
Kirby A. Baker

This note presents a useful explicit characterization of the free vector lattice FVL(ℵ) on ℵ generators as a vector lattice of piecewise linear, continuous functions on Rℵ, where ℵ is any cardinal and R is the set of real numbers. A transfinite construction of FVL(ℵ) has been given by Weinberg (14) and simplified by Holland (13, § 5). Weinberg's construction yields the fact that FVL(ℵ) is semi-simple; the present characterization is obtained by combining this fact with a theorem from universal algebra due to Garrett Birkhoff.


1966 ◽  
Vol 18 ◽  
pp. 424-432 ◽  
Author(s):  
Ralph DeMarr

The martingale convergence theorem was first proved by Doob (3) who considered a sequence of real-valued random variables. Since various collections of real-valued random variables can be regarded as vector lattices, it seems of interest to prove the martingale convergence theorem in an arbitrary vector lattice. In doing so we use the concept of order convergence that is related to convergence almost everywhere, the type of convergence used in Doob's theorem.


Sign in / Sign up

Export Citation Format

Share Document