vector lattices
Recently Published Documents


TOTAL DOCUMENTS

297
(FIVE YEARS 40)

H-INDEX

18
(FIVE YEARS 2)

2022 ◽  
pp. 1-38
Author(s):  
M. O’Brien ◽  
V.G. Troitsky ◽  
J.H. van der Walt
Keyword(s):  

Author(s):  
R. Sabbagh ◽  
O. Zabeti

The main aim of the present note is to consider bounded orthomorphisms between locally solid vector lattices. We establish a version of the remarkable Zannen theorem regarding equivalence between orthomorphisms and the underlying vector lattice for the case of all bounded orthomomorphisms. Furthermore, we investigate topological and ordered structures for these classes of orthomorphisms, as well. In particular, we show that each class of bounded orthomorphisms possesses the Levi or the $AM$-properties if and only if so is the underlying locally solid vector lattice. Moreover, we establish a similar result for the Lebesgue property, as well.


Author(s):  
M.A. Pliev

{In this paper we continue a study of relationships between the lateral partial order $\sqsubseteq$ in a vector lattice (the relation $x \sqsubseteq y$ means that $x$ is a fragment of $y$) and the theory of orthogonally additive operators on vector lattices. It was shown in~\cite{pMPP} that the concepts of lateral ideal and lateral band play the same important role in the theory of orthogonally additive operators as ideals and bands play in the theory for linear operators in vector lattices. We show that, for a vector lattice $E$ and a lateral band $G$ of~$E$, there exists a vector lattice~$F$ and a positive, disjointness preserving orthogonally additive operator $T \colon E \to F$ such that ${\rm ker} \, T = G$. As a consequence, we partially resolve the following open problem suggested in \cite{pMPP}: Are there a vector lattice~$E$ and a lateral ideal in $E$ which is not equal to the kernel of any positive orthogonally additive operator $T\colon E\to F$ for any vector lattice $F$?


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Nonna Dzhusoeva ◽  
Ruslan Kulaev ◽  
Marat Pliev

In this article, we introduce and study a new class of operators defined on a Cartesian product of ideal spaces of measurable functions. We use the general approach of the theory of vector lattices. We say that an operator T : E × F ⟶ W defined on a Cartesian product of vector lattices E and F and taking values in a vector lattice W is orthogonally biadditive if all partial operators T y : E ⟶ W and T x : F ⟶ W are orthogonally additive. In the first part of the article, we prove that, under some mild conditions, a vector space of all regular orthogonally biadditive operators O B A r E , F ; W is a Dedekind complete vector lattice. We show that the set of all horizontally-to-order continuous regular orthogonally biadditive operators is a projection band in O B A r E , F ; W . In the last section of the paper, we investigate orthogonally biadditive operators on a Cartesian product of ideal spaces of measurable functions. We show that an integral Uryson operator which depends on two functional variables is orthogonally biadditive and obtain a criterion of the regularity of an orthogonally biadditive Uryson operator.


Mathematics ◽  
2021 ◽  
Vol 9 (22) ◽  
pp. 2892
Author(s):  
Marat Pliev ◽  
Nonna Dzhusoeva ◽  
Ruslan Kulaev

In this article, we introduce a new class of operators on the Cartesian product of vector lattices. We say that a bilinear operator T:E×F→W defined on the Cartesian product of vector lattices E and F and taking values in a vector lattice W is narrow if the partial operators Tx and Ty are narrow for all x∈E,y∈F. We prove that, for order-continuous Köthe–Banach spaces E and F and a Banach space X, the classes of narrow and weakly function narrow bilinear operators from E×F to X are coincident. Then, we prove that every order-to-norm continuous C-compact bilinear regular operator T is narrow. Finally, we show that a regular bilinear operator T from the Cartesian product E×F of vector lattices E and F with the principal projection property to an order continuous Banach lattice G is narrow if and only if |T| is.


Positivity ◽  
2021 ◽  
Author(s):  
T. Hauser

AbstractIn the context of partially ordered vector spaces one encounters different sorts of order convergence and order topologies. This article investigates these notions and their relations. In particular, we study and relate the order topology presented by Floyd, Vulikh and Dobbertin, the order bound topology studied by Namioka and the concept of order convergence given in the works of Abramovich, Sirotkin, Wolk and Vulikh. We prove that the considered topologies disagree for all infinite dimensional Archimedean vector lattices that contain order units. For reflexive Banach spaces equipped with ice cream cones we show that the order topology, the order bound topology and the norm topology agree and that order convergence is equivalent to norm convergence.


Author(s):  
Abdullah Aydın

The statistically multiplicative convergence in Riesz algebras was studied and investigated with respect to the solid topology. In the present paper, the statistical convergence with the multiplication in Riesz algebras is introduced by developing topology-free techniques using the order convergence in vector lattices. Moreover, we give some relations with the other kinds of convergences such as the order statistical convergence, the $mo$-convergence, and the order convergence.


Positivity ◽  
2021 ◽  
Author(s):  
Eckhard Platen ◽  
Stefan Tappe

AbstractWe provide a general framework for no-arbitrage concepts in topological vector lattices, which covers many of the well-known no-arbitrage concepts as particular cases. The main structural condition we impose is that the outcomes of trading strategies with initial wealth zero and those with positive initial wealth have the structure of a convex cone. As one consequence of our approach, the concepts NUPBR, NAA$$_1$$ 1 and NA$$_1$$ 1 may fail to be equivalent in our general setting. Furthermore, we derive abstract versions of the fundamental theorem of asset pricing (FTAP), including an abstract FTAP on Banach function spaces, and investigate when the FTAP is warranted in its classical form with a separating measure. We also consider a financial market with semimartingales which does not need to have a numéraire, and derive results which show the links between the no-arbitrage concepts by only using the theory of topological vector lattices and well-known results from stochastic analysis in a sequence of short proofs.


Sign in / Sign up

Export Citation Format

Share Document