Growth conditions on subharmonic functions and resolvents of operators

1985 ◽  
Vol 97 (2) ◽  
pp. 321-324
Author(s):  
J. R. Partington

Let X be a complex Banach space and T a bounded operator on X. The numerical range of T is defined by

2014 ◽  
Vol 57 (3) ◽  
pp. 665-680
Author(s):  
H. S. MUSTAFAYEV

AbstractLet A be an invertible operator on a complex Banach space X. For a given α ≥ 0, we define the class $\mathcal{D}$Aα(ℤ) (resp. $\mathcal{D}$Aα (ℤ+)) of all bounded linear operators T on X for which there exists a constant CT>0, such that $ \begin{equation*} \Vert A^{n}TA^{-n}\Vert \leq C_{T}\left( 1+\left\vert n\right\vert \right) ^{\alpha }, \end{equation*} $ for all n ∈ ℤ (resp. n∈ ℤ+). We present a complete description of the class $\mathcal{D}$Aα (ℤ) in the case when the spectrum of A is real or is a singleton. If T ∈ $\mathcal{D}$A(ℤ) (=$\mathcal{D}$A0(ℤ)), some estimates for the norm of AT-TA are obtained. Some results for the class $\mathcal{D}$Aα (ℤ+) are also given.


1984 ◽  
Vol 96 (3) ◽  
pp. 483-493 ◽  
Author(s):  
Kirsti Mattila

Let X be a complex Banach space. We denote by X* the dual space of X and by B(X) the space of all bounded linear operators on X. The (spatial) numerical range of an operator TεB(X) is defined as the setIf V(T) ⊂ ℝ, then T is called hermitian. More about numerical ranges may be found in [8] and [9].


1989 ◽  
Vol 31 (1) ◽  
pp. 71-72
Author(s):  
J. E. Jamison ◽  
Pei-Kee Lin

Let X be a complex Banach space. For any bounded linear operator T on X, the (spatial) numerical range of T is denned as the setIf V(T) ⊆ R, then T is called hermitian. Vidav and Palmer (see Theorem 6 of [3, p. 78] proved that if the set {H + iK:H and K are hermitian} contains all operators, then X is a Hilbert space. It is natural to ask the following question.


1989 ◽  
Vol 32 (2) ◽  
pp. 255-259
Author(s):  
Pei-Kee Lin

Let X be a complex Banach space, and let and denote respectively the algebras of bounded and compact operators on X. The quotient algebra is called the Calkin algebra associated with X. It is known that both and are complex Banach algebras with unit e. For such unital Banach algebras B, setand define the numerical range of x ∈ B asx is said to be hermitian if W(x)⊆R. It is known thatFact 1. ([4 vol. I, p. 46]) x is hermitian if and only if ‖eiαx‖ = (or ≦)1 for all α ∈ R, where ex is defined by


2016 ◽  
Vol 2016 ◽  
pp. 1-3
Author(s):  
Sun Kwang Kim

We study a numerical radius preserving onto isometry onL(X). As a main result, whenXis a complex Banach space having both uniform smoothness and uniform convexity, we show that an onto isometryTonL(X)is numerical radius preserving if and only if there exists a scalarcTof modulus 1 such thatcTTis numerical range preserving. The examples of such spaces are Hilbert space andLpspaces for1<p<∞.


Author(s):  
J. Martinez Moreno

Let J be a complex Banach space and a complex Jordan algebra equipped with an algebra involution *. Then J is a Jordan C*-algebra if the following conditions are satisfied:(Ua is defined on page 3).


1997 ◽  
Vol 56 (2) ◽  
pp. 303-318 ◽  
Author(s):  
Maurice Hasson

Let T: B → B be a bounded linear operator on the complex Banach space B and let f(z) be analytic on a domain D containing the spectrum Sp(T) of T. Then f(T) is defined bywhere C is a contour surrounding SP(T) and contained in D.


2008 ◽  
Vol 50 (1) ◽  
pp. 17-26 ◽  
Author(s):  
THOMAS L. MILLER ◽  
VLADIMIR MÜLLER

AbstractLetTbe a bounded operator on a complex Banach spaceX. LetVbe an open subset of the complex plane. We give a condition sufficient for the mappingf(z)↦ (T−z)f(z) to have closed range in the Fréchet spaceH(V,X) of analyticX-valued functions onV. Moreover, we show that there is a largest open setUfor which the mapf(z)↦ (T−z)f(z) has closed range inH(V,X) for allV⊆U. Finally, we establish analogous results in the setting of the weak–* topology onH(V, X*).


1978 ◽  
Vol 30 (5) ◽  
pp. 1045-1069 ◽  
Author(s):  
I. Gohberg ◽  
P. Lancaster ◽  
L. Rodman

Let be a complex Banach space and the algebra of bounded linear operators on . In this paper we study functions from the complex numbers to of the form


1968 ◽  
Vol 8 (1) ◽  
pp. 119-127 ◽  
Author(s):  
S. J. Bernau

Recall that the spectrum, σ(T), of a linear operator T in a complex Banach space is the set of complex numbers λ such that T—λI does not have a densely defined bounded inverse. It is known [7, § 5.1] that σ(T) is a closed subset of the complex plane C. If T is not bounded, σ(T) may be empty or the whole of C. If σ(T) ≠ C and T is closed the spectral mapping theorem, is valid for complex polynomials p(z) [7, §5.7]. Also, if T is closed and λ ∉ σ(T), (T–λI)−1 is everywhere defined.


Sign in / Sign up

Export Citation Format

Share Document