scholarly journals Rational discrete first degree cohomology for totally disconnected locally compact groups

2018 ◽  
Vol 168 (2) ◽  
pp. 361-377 ◽  
Author(s):  
ILARIA CASTELLANO

AbstractIt is well known that the existence of more than two ends in the sense of J.R. Stallings for a finitely generated discrete group G can be detected on the cohomology group H1(G,R[G]), where R is either a finite field, the ring of integers or the field of rational numbers. It will be shown (cf. Theorem A*) that for a compactly generated totally disconnected locally compact group G the same information about the number of ends of G in the sense of H. Abels can be provided by dH1(G, Bi(G)), where Bi(G) is the rational discrete standard bimodule of G, and dH•(G, _) denotes rational discrete cohomology as introduced in [6].As a consequence one has that the class of fundamental groups of a finite graph of profinite groups coincides with the class of compactly presented totally disconnected locally compact groups of rational discrete cohomological dimension at most 1 (cf. Theorem B).

2021 ◽  
pp. 1-27
Author(s):  
S. Arora ◽  
I. Castellano ◽  
G. Corob Cook ◽  
E. Martínez-Pedroza

This paper is part of the program of studying large-scale geometric properties of totally disconnected locally compact groups, TDLC-groups, by analogy with the theory for discrete groups. We provide a characterization of hyperbolic TDLC-groups, in terms of homological isoperimetric inequalities. This characterization is used to prove the main result of this paper: for hyperbolic TDLC-groups with rational discrete cohomological dimension [Formula: see text], hyperbolicity is inherited by compactly presented closed subgroups. As a consequence, every compactly presented closed subgroup of the automorphism group [Formula: see text] of a negatively curved locally finite [Formula: see text]-dimensional building [Formula: see text] is a hyperbolic TDLC-group, whenever [Formula: see text] acts with finitely many orbits on [Formula: see text]. Examples where this result applies include hyperbolic Bourdon’s buildings. We revisit the construction of small cancellation quotients of amalgamated free products, and verify that it provides examples of hyperbolic TDLC-groups of rational discrete cohomological dimension [Formula: see text] when applied to amalgamated products of profinite groups over open subgroups. We raise the question of whether our main result can be extended to locally compact hyperbolic groups if rational discrete cohomological dimension is replaced by asymptotic dimension. We prove that this is the case for discrete groups and sketch an argument for TDLC-groups.


2017 ◽  
Vol 5 ◽  
Author(s):  
PIERRE-EMMANUEL CAPRACE ◽  
COLIN D. REID ◽  
GEORGE A. WILLIS

We use the structure lattice, introduced in Part I, to undertake a systematic study of the class $\mathscr{S}$ consisting of compactly generated, topologically simple, totally disconnected locally compact groups that are nondiscrete. Given $G\in \mathscr{S}$, we show that compact open subgroups of $G$ involve finitely many isomorphism types of composition factors, and do not have any soluble normal subgroup other than the trivial one. By results of Part I, this implies that the centralizer lattice and local decomposition lattice of $G$ are Boolean algebras. We show that the $G$-action on the Stone space of those Boolean algebras is minimal, strongly proximal, and microsupported. Building upon those results, we obtain partial answers to the following key problems: Are all groups in $\mathscr{S}$ abstractly simple? Can a group in $\mathscr{S}$ be amenable? Can a group in $\mathscr{S}$ be such that the contraction groups of all of its elements are trivial?


Author(s):  
R. W. Bagley ◽  
T. S. Wu ◽  
J. S. Yang

AbstractIf G is a locally compact group such thatG/G0contains a uniform compactly generated nilpotent subgroup, thenGhas a maximal compact normal subgroupKsuch thatG/Gis a Lie group. A topological groupGis an N-group if, for each neighbourhoodUof the identity and each compact setC⊂G, there is a neighbourhoodVof the identity such thatfor eachg∈G. Several results on N-groups are obtained and it is shown that a related weaker condition is equivalent to local finiteness for certain totally disconnected groups.


1997 ◽  
Vol 55 (1) ◽  
pp. 143-146 ◽  
Author(s):  
G. Willis

It is shown that, if G is a totally disconnected, compactly generated and nilpotent locally compact group, then it has a base of neighbourhoods of the identity consisting of compact, open, normal subgroups. An example is given showing that the hypothesis that G be compactly generated is necessary.


2015 ◽  
Vol 18 (1) ◽  
pp. 45-60
Author(s):  
Pekka Salmi

Abstract We define the notion of generalised Cayley–Abels graph for compactly generated locally compact groups in terms of quasi-actions. This extends the notion of Cayley–Abels graph of a compactly generated totally disconnected locally compact group, studied in particular by Krön and Möller under the name of rough Cayley graph (and relative Cayley graph). We construct a generalised Cayley–Abels graph for any compactly generated locally compact group using quasi-lattices and show uniqueness up to quasi-isometry. A class of examples is given by the Cayley graphs of cocompact lattices in compactly generated groups. As an application, we show that a compactly generated group has polynomial growth if and only if its generalised Cayley–Abels graph has polynomial growth (same for intermediate and exponential growth). Moreover, a unimodular compactly generated group is amenable if and only if its generalised Cayley–Abels graph is amenable as a metric space.


2016 ◽  
Vol 37 (7) ◽  
pp. 2163-2186 ◽  
Author(s):  
ANNA GIORDANO BRUNO ◽  
SIMONE VIRILI

Let $G$ be a topological group, let $\unicode[STIX]{x1D719}$ be a continuous endomorphism of $G$ and let $H$ be a closed $\unicode[STIX]{x1D719}$-invariant subgroup of $G$. We study whether the topological entropy is an additive invariant, that is, $$\begin{eqnarray}h_{\text{top}}(\unicode[STIX]{x1D719})=h_{\text{top}}(\unicode[STIX]{x1D719}\restriction _{H})+h_{\text{top}}(\bar{\unicode[STIX]{x1D719}}),\end{eqnarray}$$ where $\bar{\unicode[STIX]{x1D719}}:G/H\rightarrow G/H$ is the map induced by $\unicode[STIX]{x1D719}$. We concentrate on the case when $G$ is totally disconnected locally compact and $H$ is either compact or normal. Under these hypotheses, we show that the above additivity property holds true whenever $\unicode[STIX]{x1D719}H=H$ and $\ker (\unicode[STIX]{x1D719})\leq H$. As an application, we give a dynamical interpretation of the scale $s(\unicode[STIX]{x1D719})$ by showing that $\log s(\unicode[STIX]{x1D719})$ is the topological entropy of a suitable map induced by $\unicode[STIX]{x1D719}$. Finally, we give necessary and sufficient conditions for the equality $\log s(\unicode[STIX]{x1D719})=h_{\text{top}}(\unicode[STIX]{x1D719})$ to hold.


Sign in / Sign up

Export Citation Format

Share Document