scholarly journals Fourier duality in the Brascamp–Lieb inequality

Author(s):  
JONATHAN BENNETT ◽  
EUNHEE JEONG

Abstract It was observed recently in work of Bez, Buschenhenke, Cowling, Flock and the first author, that the euclidean Brascamp–Lieb inequality satisfies a natural and useful Fourier duality property. The purpose of this paper is to establish an appropriate discrete analogue of this. Our main result identifies the Brascamp–Lieb constants on (finitely-generated) discrete abelian groups with Brascamp–Lieb constants on their (Pontryagin) duals. As will become apparent, the natural setting for this duality principle is that of locally compact abelian groups, and this raises basic questions about Brascamp–Lieb constants formulated in this generality.

Author(s):  
Prasadini Mahapatra ◽  
Divya Singh

Scaling and generalized scaling sets determine wavelet sets and hence wavelets. In real case, wavelet sets were proved to be an important tool for the construction of MRA as well as non-MRA wavelets. However, any result related to scaling/generalized scaling sets is not available in case of locally compact abelian groups. This paper gives a characterization of scaling sets and its generalized version along with relevant examples in dual Cantor dyadic group [Formula: see text]. These results can further be generalized to arbitrary locally compact abelian groups.


Author(s):  
Edwin Hewitt ◽  
Herbert S. Zuckerman

Introduction. A famous construction of Wiener and Wintner ((13)), later refined by Salem ((11)) and extended by Schaeffer ((12)) and Ivašev-Musatov ((8)), produces a non-negative, singular, continuous measure μ on [ − π,π[ such thatfor every ∈ > 0. It is plain that the convolution μ * μ is absolutely continuous and in fact has Lebesgue–Radon–Nikodým derivative f such that For general locally compact Abelian groups, no exact analogue of (1 · 1) seems possible, as the character group may admit no natural order. However, it makes good sense to ask if μ* μ is absolutely continuous and has pth power integrable derivative. We will construct continuous singular measures μ on all non-discrete locally compact Abelian groups G such that μ * μ is a absolutely continuous and for which the Lebesgue–Radon–Nikodým derivative of μ * μ is in, for all real p > 1.


Sign in / Sign up

Export Citation Format

Share Document