Time-periodic solutions to the one-dimensional wave equation with periodic or anti-periodic boundary conditions

Author(s):  
Shuguan Ji ◽  
Yong Li

This paper is devoted to the study of time-periodic solutions to the nonlinear one-dimensional wave equation with x-dependent coefficients u(x)ytt – (u(x)yx)x + g(x,t,y) = f(x,t) on (0,π) × ℝ under the periodic boundary conditions y(0,t) = y(π,t), yx(0,t) = yx(π,t) or anti-periodic boundary conditions y(0, t) = –y(π,t), yx[0,t) = – yx(π,t). Such a model arises from the forced vibrations of a non-homogeneous string and the propagation of seismic waves in non-isotropic media. Our main concept is that of the ‘weak solution’. For T, the rational multiple of π, we prove some important properties of the weak solution operator. Based on these properties, the existence and regularity of weak solutions are obtained.

Author(s):  
Shuguan Ji

This paper is concerned with the existence of time-periodic solutions to the nonlinear wave equation with x -dependent coefficients u ( x ) y tt − ( u ( x ) y x ) x + au ( x ) y +| y | p −2 y = f ( x ,  t ) on (0,  π )× under the periodic or anti-periodic boundary conditions y (0, t )=± y ( π ,  t ), y x (0,  t )=± y x ( π ,  t ) and the time-periodic conditions y ( x ,  t + T )= y ( x ,  t ), y t ( x ,  t + T )= y t ( x ,  t ). Such a model arises from the forced vibrations of a non-homogeneous string and the propagation of seismic waves in non-isotropic media. A main concept is the notion ‘weak solution’ to be given in §2. For T =2 π / k ( k ∈ ), we establish the existence of time-periodic solutions in the weak sense by investigating some important properties of the wave operator with x -dependent coefficients.


2000 ◽  
Vol 10 (05) ◽  
pp. 651-672 ◽  
Author(s):  
M. BOSTAN ◽  
F. POUPAUD

We study the Vlasov–Poisson system with time periodic boundary conditions. For small data we prove existence of weak periodic solutions in any space dimension. In the one-dimensional case the result is stronger: we obtain existence of mild solution and uniqueness of this solution when the data are smooth. It is necessary to impose a nonvanishing condition for the incoming velocities in order to control the lifetime of particles in the domain.


Sign in / Sign up

Export Citation Format

Share Document