periodic boundary
Recently Published Documents


TOTAL DOCUMENTS

1946
(FIVE YEARS 331)

H-INDEX

57
(FIVE YEARS 6)

Mathematics ◽  
2022 ◽  
Vol 10 (2) ◽  
pp. 219
Author(s):  
Mikhail Kamenskii ◽  
Garik Petrosyan ◽  
Paul Raynaud de Fitte ◽  
Jen-Chih Yao

In this paper we study the existence of a mild solution of a periodic boundary value problem for fractional quasilinear differential equations in a Hilbert spaces. We assume that a linear part in equations is a self-adjoint positive operator with dense domain in Hilbert space and a nonlinear part is a map obeying Carathéodory type conditions. We find the mild solution of this problem in the form of a series in a Hilbert space. In the space of continuous functions, we construct the corresponding resolving operator, and for it, by using Schauder theorem, we prove the existence of a fixed point. At the end of the paper, we give an example for a boundary value problem for a diffusion type equation.


2022 ◽  
Vol 2022 ◽  
pp. 1-8
Author(s):  
Gopi Prasad ◽  
Hüseyin Işik

The aim is to present a new relational variant of fixed point result that generalizes various fixed point results of the existing theme for contractive type mappings. As an application, we solve a periodic boundary value problem and validate all assertions with the help of nontrivial examples. We also highlight the close connections of the fixed point results equipped with a binary relation to that of graph related metrical fixed point results. Radically, these investigations unify the theory of metrical fixed points for contractive type mappings.


Author(s):  
Adrián Hinojosa-Calleja ◽  
Marta Sanz-Solé

AbstractConsider the linear stochastic biharmonic heat equation on a d–dimen- sional torus ($$d=1,2,3$$ d = 1 , 2 , 3 ), driven by a space-time white noise and with periodic boundary conditions: $$\begin{aligned} \left( \frac{\partial }{\partial t}+(-\varDelta )^2\right) v(t,x)= \sigma \dot{W}(t,x),\ (t,x)\in (0,T]\times {\mathbb {T}}^d, \end{aligned}$$ ∂ ∂ t + ( - Δ ) 2 v ( t , x ) = σ W ˙ ( t , x ) , ( t , x ) ∈ ( 0 , T ] × T d , $$v(0,x)=v_0(x)$$ v ( 0 , x ) = v 0 ( x ) . We find the canonical pseudo-distance corresponding to the random field solution, therefore the precise description of the anisotropies of the process. We see that for $$d=2$$ d = 2 , they include a $$z(\log \tfrac{c}{z})^{1/2}$$ z ( log c z ) 1 / 2 term. Consider D independent copies of the random field solution to (0.1). Applying the criteria proved in Hinojosa-Calleja and Sanz-Solé (Stoch PDE Anal Comp 2021. 10.1007/s40072-021-00190-1), we establish upper and lower bounds for the probabilities that the path process hits bounded Borel sets.This yields results on the polarity of sets and on the Hausdorff dimension of the path process.


2022 ◽  
Author(s):  
Josep Planelles

This is a lecture notes for undergraduate students. We try to tackle the single valuedness of spatial and double valuedness of spin functions. Also, we adress the need of spinors to accommodate spin functions with some parallelism to the need of axial vectors (or antisymmetric traceless tensors) to accommodate angular momentum. Finally, we revisit the Dirac and Weyl tricks on the non-equivalence of a 2 pi and a 4 pi rotation related the topology of rotation and unitary groups.


2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Holger Frahm ◽  
Sascha Gehrmann

Abstract The finite size spectrum of the critical ℤ2-staggered spin-1/2 XXZ model with quantum group invariant boundary conditions is studied. For a particular (self-dual) choice of the staggering the spectrum of conformal weights of this model has been recently been shown to have a continuous component, similar as in the model with periodic boundary conditions whose continuum limit has been found to be described in terms of the non-compact SU(2, ℝ)/U(1) Euclidean black hole conformal field theory (CFT). Here we show that the same is true for a range of the staggering parameter. In addition we find that levels from the discrete part of the spectrum of this CFT emerge as the anisotropy is varied. The finite size amplitudes of both the continuous and the discrete levels are related to the corresponding eigenvalues of a quasi-momentum operator which commutes with the Hamiltonian and the transfer matrix of the model.


2021 ◽  
Vol 104 (4) ◽  
pp. 110-117
Author(s):  
N.T. Orumbayeva ◽  
◽  
T.D. Tokmagambetova ◽  
Zh.N. Nurgalieva ◽  
◽  
...  

In this paper, by means of a change of variables, a nonlinear semi-periodic boundary value problem for the Goursat equation is reduced to a linear gravity problem for hyperbolic equations. Reintroducing a new function, the obtained problem is reduced to a family of boundary value problems for ordinary differential equations and functional relations. When solving a family of boundary value problems for ordinary differential equations, the parameterization method is used. The application of this approach made it possible to establish the coefficients of the unique solvability of the semi-periodic problem for the Goursat equation and to propose constructive algorithms for finding an approximate solution.


Sign in / Sign up

Export Citation Format

Share Document