scholarly journals Generalized shear deformations for isotropic incompressible hyperelastic materials

Author(s):  
James M. Hill

AbstractFor isotropic incompressible hyperelastic materials the single function characterizing generalized shear deformations or as they are sometimes called anti-plane strain deformations must satisfy two distinct partial differential equations. Knowles [5] has recently given a necessary and sufficient condition for the strain–energy function of the material which if satisfied ensures that the two equations have consistent solutions. It is shown here for the general material not satisfying Knowles' criterion that the only possible consistent solution of the two partial differential equations are those which are already known to exist for all strain–energy functions. More general types of generalized shear deformations for such meterials are shown to exist only for special or restricted form ot the strain-energy function. In derving these results we also obtain an alternative derivation of Knowles' criterion.

1955 ◽  
Vol 51 (2) ◽  
pp. 363-367 ◽  
Author(s):  
J. E. Adkins

For elastic deformations beyond the range of the classical infinitesimal theory of elasticity, the governing differential equations are non-linear in form, and orthodox methods of solution are not usually applicable. Simplifying features appear, however, when a restriction is imposed either upon the form of the deformation, or upon the form of strain-energy function employed to define the elastic properties of the material. Thus in the problems of torsion and flexure considered by Rivlin (4, 5, 6) it is possible to avoid introducing partial differential equations into the analysis, while in the theory of finite plane strain developed by Adkins, Green and Shield (1) the reduction in the number of dependent and independent variables involved introduces some measure of simplicity. Some further simplification is achieved when the strain-energy function can be considered as a linear function of the strain invariants as postulated by Mooney(2) for incompressible materials. In the present paper the plane-strain equations for a Mooney material are reduced to symmetrical forms which do not involve the stress components, and some special solutions of these equations are derived.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Florian Hüter ◽  
Frank Rieg

Purpose A general first-invariant constitutive model has been derived in literature for incompressible, isotropic hyperelastic materials, known as Marlow model, which reproduces test data exactly without the need of curve-fitting procedures. This paper aims to describe how to extend Marlow’s constitutive model to the more general case of compressible hyperelastic materials. Design/methodology/approach The isotropic constitutive model is based on a strain energy function, whose isochoric part is solely dependent on the first modified strain invariant. Based on Marlow’s idea, a principle of energetically equivalent deformation states is derived for the compressible case, which is used to determine the underlying strain energy function directly from measured test data. No particular functional of the strain energy function is assumed. It is shown how to calibrate the volumetric and isochoric strain energy functions uniquely with uniaxial or biaxial test data only. The constitutive model is implemented into a finite element program to demonstrate its applicability. Findings The model is well suited for use in finite element analysis. Only one set of test data is required for calibration without any need for curve-fitting procedures. These test data are reproduced exactly, and the model prediction is reasonable for other deformation modes. Originality/value Marlow’s basic concept is extended to the compressible case and applied to both the volumetric and isochoric part of the compressible strain energy function. Moreover, a novel approach is described on how both compressive and tensile test data can be used simultaneously to calibrate the model.


1972 ◽  
Vol 39 (2) ◽  
pp. 491-494 ◽  
Author(s):  
K. H. Hsu

A general approach to the numerical solutions for axially symmetric membrane problem is presented. The formulation of the problem leads to a system of first-order nonlinear differential equations. These equations are formulated such that the numerical integration can be carried out for any form of strain-energy function. Solutions to these equations are feasible for various boundary conditions. In this paper, these equations are applied to the problem of a bonded toroid under inflation. A bonded toroid, which is in the shape of a tubeless tire, has its two circular edges rigidly bonded to a rim. The Runge-Kutta method is employed to solve the system of differential equations, in which Mooney’s form of strain-energy function is adopted.


Sign in / Sign up

Export Citation Format

Share Document