membrane problem
Recently Published Documents


TOTAL DOCUMENTS

56
(FIVE YEARS 5)

H-INDEX

11
(FIVE YEARS 1)

Symmetry ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1343
Author(s):  
Xue Li ◽  
Jun-Yi Sun ◽  
Zhi-Hang Zhao ◽  
Xiao-Ting He

In this study, the problem of axisymmetric deformation of peripherally fixed and uniformly laterally loaded circular membranes with arbitrary initial stress is solved analytically. This problem could be called the generalized Föppl–Hencky membrane problem as the case where the initial stress in the membrane is equal to zero is the well-known Föppl–Hencky membrane problem. The problem can be mathematically modeled only in terms of radial coordinate owing to its axial symmetry, and in the present work, it is reformulated by considering an arbitrary initial stress (tensile, compressive, or zero) and by simultaneously improving the out-of-plane equilibrium equation and geometric equation, while the formulation was previously considered to fail to improve the geometric equation. The power-series method is used to solve the reformulated boundary value problem, and a new and more refined analytic solution of the problem is presented. This solution is actually observed to be able to regress into the well-known Hencky solution of zero initial stress, allowing the considered initial stress to be zero. Moreover, the numerical example conducted shows that the obtained power-series solutions for stress and deflection converge very well, and have higher computational accuracy in comparison with the existing solutions.


Mathematics ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 631 ◽  
Author(s):  
Yong-Sheng Lian ◽  
Jun-Yi Sun ◽  
Zhi-Hang Zhao ◽  
Xiao-Ting He ◽  
Zhou-Lian Zheng

In this paper, the well-known Föppl–Hencky membrane problem—that is, the problem of axisymmetric deformation of a transversely uniformly loaded and peripherally fixed circular membrane—was resolved, and a more refined closed-form solution of the problem was presented, where the so-called small rotation angle assumption of the membrane was given up. In particular, a more effective geometric equation was, for the first time, established to replace the classic one, and finally the resulting new boundary value problem due to the improvement of geometric equation was successfully solved by the power series method. The conducted numerical example indicates that the closed-form solution presented in this study has higher computational accuracy in comparison with the existing solutions of the well-known Föppl–Hencky membrane problem. In addition, some important issues were discussed, such as the difference between membrane problems and thin plate problems, reasonable approximation or assumption during establishing geometric equations, and the contribution of reducing approximations or relaxing assumptions to the improvement of the computational accuracy and applicability of a solution. Finally, some opinions on the follow-up work for the well-known Föppl–Hencky membrane were presented.


2019 ◽  
Vol 19 (3) ◽  
pp. 415-430 ◽  
Author(s):  
Fleurianne Bertrand ◽  
Zhiqiang Cai ◽  
Eun Young Park

AbstractThis paper develops and analyzes two least-squares methods for the numerical solution of linear elasticity and Stokes equations in both two and three dimensions. Both approaches use the{L^{2}}norm to define least-squares functionals. One is based on the stress-displacement/velocity-rotation/vorticity-pressure (SDRP/SVVP) formulation, and the other is based on the stress-displacement/velocity-rotation/vorticity (SDR/SVV) formulation. The introduction of the rotation/vorticity variable enables us to weakly enforce the symmetry of the stress. It is shown that the homogeneous least-squares functionals are elliptic and continuous in the norm of{H(\mathrm{div};\Omega)}for the stress, of{H^{1}(\Omega)}for the displacement/velocity, and of{L^{2}(\Omega)}for the rotation/vorticity and the pressure. This immediately implies optimal error estimates in the energy norm for conforming finite element approximations. As well, it admits optimal multigrid solution methods if Raviart–Thomas finite element spaces are used to approximate the stress tensor. Through a refined duality argument, an optimal{L^{2}}norm error estimates for the displacement/velocity are also established. Finally, numerical results for a Cook’s membrane problem of planar elasticity are included in order to illustrate the robustness of our method in the incompressible limit.


2019 ◽  
Vol 18 (5) ◽  
pp. 2679-2691
Author(s):  
Giovanni Cupini ◽  
◽  
Eugenio Vecchi ◽  

2017 ◽  
Vol 345 (12) ◽  
pp. 824-831 ◽  
Author(s):  
Gonzalo Castiñeira ◽  
Ángel Rodríguez-Arós

2015 ◽  
Vol 22 (4) ◽  
pp. 798-822 ◽  
Author(s):  
Francesco Bonaldi ◽  
Giuseppe Geymonat ◽  
Françoise Krasucki ◽  
Michele Serpilli

We present an asymptotic two-dimensional plate model for linear magneto-electro-thermo-elastic sensors and actuators, under the hypotheses of anisotropy and homogeneity. Four different boundary conditions pertaining to electromagnetic quantities are considered, leading to four different models: the sensor–actuator model, the actuator–sensor model, the actuator model and the sensor model. We validate the obtained two-dimensional models by proving weak convergence results. Each of the four plate problems turns out to be decoupled into a flexural problem, involving the transversal displacement of the plate, and a certain partially or totally coupled membrane problem.


Sign in / Sign up

Export Citation Format

Share Document