scholarly journals Large deviations and quasi-stationarity for density-dependent birth-death processes

Author(s):  
Terence Chan

AbstractConsider a density-dependent birth-death process XN on a finite state space of size N. Let PN be the law (on D([0, T]) where T > 0 is arbitrary) of the density process XN/N and let πN be the unique stationary distribution (on[0,1]) of XN/N, if it exists. Typically, these distributions converge weakly to a degenerate distribution as N → ∞ so the probability of sets not containing the degenerate point will tend to 0; large deviations is concerned with obtaining the exponential decay rate of these probabilities. Friedlin-Wentzel theory is used to establish the large deviations behaviour (as N → ∞) of PN. In the one-dimensional case, a large deviations principle for the stationary distribution πN is obtained by elementary explicit computations. However, when the birth-death process has an absorbing state at 0 (so πN no longer exists), the same elementary computations are still applicable to the quasi-stationary distribution, and we show that the quasi-stationary distributions obey the same large deviations principle as in the recurrent case. In addition, we address some questions related to the estimated time to absorption and obtain a large deviations principle for the invariant distribution in higher dimensions by studying a quasi-potential.

Author(s):  
Phil Diamond

AbstractCompetition between a finite number of searching insect parasites is modelled by differential equations and birth-death processes. In the one species case of intraspecific competition, the deterministic equilibrium is globally stable and, for large populations, approximates the mean of the stationary distribution of the process. For two species, both inter- and intraspecific competition occurs and the deterministic equilibrium is globally stable. When the birth-death process is reversible, it is shown that the mean of the stationary distribution is approximated by the equilibrium. Confluent hypergeometric functions of two variables are important to the theory.


1986 ◽  
Vol 23 (04) ◽  
pp. 1013-1018
Author(s):  
B. G. Quinn ◽  
H. L. MacGillivray

Sufficient conditions are presented for the limiting normality of sequences of discrete random variables possessing unimodal distributions. The conditions are applied to obtain normal approximations directly for the hypergeometric distribution and the stationary distribution of a special birth-death process.


2012 ◽  
Vol 49 (4) ◽  
pp. 1036-1051 ◽  
Author(s):  
Damian Clancy

For a sequence of finite state space birth–death processes, each having a single absorbing state, we show that, under certain conditions, as the size of the state space tends to infinity, the quasistationary distributions converge to the stationary distribution of a limiting infinite state space birth–death process. This generalizes a result of Keilson and Ramaswamy by allowing birth and death rates to depend upon the size of the state space. We give sufficient conditions under which the convergence result of Keilson and Ramaswamy remains valid. The generalization allows us to apply our convergence result to examples from population biology: a Pearl–Verhulst logistic population growth model and the susceptible-infective-susceptible (SIS) model for infectious spread. The limit distributions obtained suggest new finite-population approximations to the quasistationary distributions of these models, obtained by the method of cumulant closure. The new approximations are found to be both simple in form and accurate.


1986 ◽  
Vol 23 (04) ◽  
pp. 1013-1018 ◽  
Author(s):  
B. G. Quinn ◽  
H. L. MacGillivray

Sufficient conditions are presented for the limiting normality of sequences of discrete random variables possessing unimodal distributions. The conditions are applied to obtain normal approximations directly for the hypergeometric distribution and the stationary distribution of a special birth-death process.


1992 ◽  
Vol 29 (4) ◽  
pp. 781-791 ◽  
Author(s):  
Masaaki Kijima

Let N(t) be an exponentially ergodic birth-death process on the state space {0, 1, 2, ···} governed by the parameters {λn, μn}, where µ0 = 0, such that λn = λ and μn = μ for all n ≧ N, N ≧ 1, with λ < μ. In this paper, we develop an algorithm to determine the decay parameter of such a specialized exponentially ergodic birth-death process, based on van Doorn's representation (1987) of eigenvalues of sign-symmetric tridiagonal matrices. The decay parameter is important since it is indicative of the speed of convergence to ergodicity. Some comparability results for the decay parameters are given, followed by the discussion for the decay parameter of a birth-death process governed by the parameters such that limn→∞λn = λ and limn→∞µn = μ. The algorithm is also shown to be a useful tool to determine the quasi-stationary distribution, i.e. the limiting distribution conditioned to stay in {1, 2, ···}, of such specialized birth-death processes.


2012 ◽  
Vol 49 (04) ◽  
pp. 1036-1051
Author(s):  
Damian Clancy

For a sequence of finite state space birth–death processes, each having a single absorbing state, we show that, under certain conditions, as the size of the state space tends to infinity, the quasistationary distributions converge to the stationary distribution of a limiting infinite state space birth–death process. This generalizes a result of Keilson and Ramaswamy by allowing birth and death rates to depend upon the size of the state space. We give sufficient conditions under which the convergence result of Keilson and Ramaswamy remains valid. The generalization allows us to apply our convergence result to examples from population biology: a Pearl–Verhulst logistic population growth model and the susceptible-infective-susceptible (SIS) model for infectious spread. The limit distributions obtained suggest new finite-population approximations to the quasistationary distributions of these models, obtained by the method of cumulant closure. The new approximations are found to be both simple in form and accurate.


1978 ◽  
Vol 10 (03) ◽  
pp. 570-586 ◽  
Author(s):  
James A. Cavender

Letqn(t) be the conditioned probability of finding a birth-and-death process in statenat timet,given that absorption into state 0 has not occurred by then. A family {q1(t),q2(t), · · ·} that is constant in time is a quasi-stationary distribution. If any exist, the quasi-stationary distributions comprise a one-parameter family related to quasi-stationary distributions of finite state-space approximations to the process.


1992 ◽  
Vol 29 (04) ◽  
pp. 781-791 ◽  
Author(s):  
Masaaki Kijima

Let N(t) be an exponentially ergodic birth-death process on the state space {0, 1, 2, ···} governed by the parameters {λn, μn }, where µ 0 = 0, such that λn = λ and μn = μ for all n ≧ N, N ≧ 1, with λ &lt; μ. In this paper, we develop an algorithm to determine the decay parameter of such a specialized exponentially ergodic birth-death process, based on van Doorn's representation (1987) of eigenvalues of sign-symmetric tridiagonal matrices. The decay parameter is important since it is indicative of the speed of convergence to ergodicity. Some comparability results for the decay parameters are given, followed by the discussion for the decay parameter of a birth-death process governed by the parameters such that lim n→∞ λn = λ and lim n→∞ µn = μ. The algorithm is also shown to be a useful tool to determine the quasi-stationary distribution, i.e. the limiting distribution conditioned to stay in {1, 2, ···}, of such specialized birth-death processes.


1978 ◽  
Vol 10 (3) ◽  
pp. 570-586 ◽  
Author(s):  
James A. Cavender

Let qn(t) be the conditioned probability of finding a birth-and-death process in state n at time t, given that absorption into state 0 has not occurred by then. A family {q1(t), q2(t), · · ·} that is constant in time is a quasi-stationary distribution. If any exist, the quasi-stationary distributions comprise a one-parameter family related to quasi-stationary distributions of finite state-space approximations to the process.


Sign in / Sign up

Export Citation Format

Share Document