Airborne Earth Observation Positioning and Orientation by SINS/GPS Integration Using CD R-T-S Smoothing

2013 ◽  
Vol 67 (2) ◽  
pp. 211-225 ◽  
Author(s):  
Xiaolin Gong ◽  
Tingting Qin

This paper addresses the issue of state estimation in the integration of a Strapdown Inertial Navigation System (SINS) and Global Positioning System (GPS), which is used for airborne earth observation positioning and orientation. For a nonlinear system, especially with large initial attitude errors, the performance of linear estimation approaches will degrade. In this paper a nonlinear error model based on angle errors is built, and a nonlinear estimation algorithm called the Central Difference Rauch-Tung-Striebel (R-T-S) Smoother (CDRTSS) is utilized in SINS/GPS integration post-processing. In this algorithm, the measurements are first processed by the forward Central Difference Kalman filter (CDKF) and then a separate backward smoothing pass is used to obtain the improved solution. The performance of this algorithm is compared with a similar smoother based on an extended Kalman filter known as ERTSS through Monte Carlo simulations and flight tests with a loaded SINS/GPS integrated system. Furthermore, a digital camera was used to verify the precision of practical applications in a check field with numerous reference points. All these validity checks demonstrate that CDRTSS is a better method and the work of this paper will offer a new approach for SINS/GPS integration for Synthetic Aperture Radar (SAR) and other airborne earth observation tasks.

Author(s):  
Jihua Zhu ◽  
Nanning Zheng ◽  
Zejian Yuan ◽  
Qiang Zhang ◽  
Xuetao Zhang ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Yong-Gang Zhang ◽  
Yu-Long Huang ◽  
Zhe-Min Wu ◽  
Ning Li

A new moving state marine initial alignment method of strap-down inertial navigation system (SINS) is proposed based on high-degree cubature Kalman filter (CKF), which can capture higher order Taylor expansion terms of nonlinear alignment model than the existing third-degree CKF, unscented Kalman filter and central difference Kalman filter, and improve the accuracy of initial alignment under large heading misalignment angle condition. Simulation results show the efficiency and advantage of the proposed initial alignment method as compared with existing initial alignment methods for the moving state SINS initial alignment with large heading misalignment angle.


2010 ◽  
Vol 44-47 ◽  
pp. 3864-3868
Author(s):  
Ji Cheng Ding ◽  
Lin Zhao ◽  
Jia Liu ◽  
Shuai He Gao

To implement indoor GPS signal tracking in standalone mode when the tracking loop is unlocked and data bit edge is unknown, the paper develops a modified Viterbi Algorithm (MVA) based on dynamic programming, and it was applied for GPS bit synchronization. Besides, two combination carrier tracking schemes based on Central Difference Kalman Filter (CDKF) and MVA module were designed for indoor GPS signal. The testing results indicate that the methods can successful detect bit edge position with high detection probability whether or not the tracking loop is locked. The co-operational tracking scheme is still able to perform when the signal quality deteriorate.


Sign in / Sign up

Export Citation Format

Share Document