earth observation
Recently Published Documents


TOTAL DOCUMENTS

3105
(FIVE YEARS 946)

H-INDEX

54
(FIVE YEARS 12)

2022 ◽  
Vol 219 ◽  
pp. 104316
Author(s):  
Yunyu Tian ◽  
Nandin-Erdene Tsendbazar ◽  
Eveline van Leeuwen ◽  
Rasmus Fensholt ◽  
Martin Herold

2022 ◽  
Vol 78 ◽  
pp. 20-39
Author(s):  
P.V. Arun ◽  
R. Sadeh ◽  
A. Avneri ◽  
Y. Tubul ◽  
C. Camino ◽  
...  

2022 ◽  
Vol 14 (2) ◽  
pp. 333
Author(s):  
Luca Oggioni ◽  
David Sanchez del Rio Kandel ◽  
Giorgio Pariani

In the framework of earth observation for scientific purposes, we consider a multiband spatial compressive sensing (CS) acquisition system, based on a pushbroom scanning. We conduct a series of analyses to address the effects of the satellite movement on its performance in a context of a future space mission aimed at monitoring the cryosphere. We initially apply the state-of-the-art techniques of CS to static images, and evaluate the reconstruction errors on representative scenes of the earth. We then extend the reconstruction algorithms to pushframe acquisitions, i.e., static images processed line-by-line, and pushbroom acquisitions, i.e., moving frames, which consider the payload displacement during acquisition. A parallel analysis on the classical pushbroom acquisition strategy is also performed for comparison. Design guidelines following this analysis are then provided.


2022 ◽  
pp. 100695
Author(s):  
Rose Pritchard ◽  
Thomas Alexandridis ◽  
Mary Amponsah ◽  
Nabil Ben Khatra ◽  
Dan Brockington ◽  
...  

2022 ◽  
Vol 71 (2) ◽  
pp. 2533-2542
Author(s):  
Md. Amanath Ullah ◽  
Touhidul Alam ◽  
Ali F. Almutairi ◽  
Mohammad Tariqul Islam

2022 ◽  
Author(s):  
J P Dudley ◽  
S V Samsonov

The RADARSAT Constellation Mission (RCM) is Canada's latest system of C-band Synthetic Aperture Radar (SAR) Earth observation satellites. The system of three satellites, spaced equally in a common orbit, allows for a rapid four-day repeat interval. The RCM has been designed with a selection of stripmap, spotlight, and ScanSAR beam modes which offer varied combinations of spatial resolution and coverage. Using Differential Interferometric Synthetic Aperture Radar (DInSAR) techniques, the growing archive of SAR data gathered by RCM can be used for change detection and ground deformation monitoring for diverse applications in Canada and around the world. In partnership with the Canadian Space Agency (CSA), the Canada Centre for Mapping and Earth Observation (CCMEO) has developed an automated system for generating standard and advanced deformation products and change detection from SAR data acquired by RCM and RADARSAT-2 satellites using DInSAR processing methodology. Using this system, this paper investigates four key interferometric properties of the RCM system which were not available on the RADARSAT-1 or RADARSAT-2 missions: The impact of the high temporal resolution of the four-day repeat cycle of the RCM on temporal decorrelation trends is tested and fitted against simple temporal decay models. The effect of the normalization and the precision of the radiometric calibration on interferometric spatial coherence is investigated. The performance of the RCM ScanSAR mode for wide area interferometric analysis is tested. The performance of the novel RCM Compact-polarization (CP) mode for interferometric analysis is also investigated.


Sign in / Sign up

Export Citation Format

Share Document