Journal of Navigation
Latest Publications


TOTAL DOCUMENTS

5738
(FIVE YEARS 273)

H-INDEX

49
(FIVE YEARS 5)

Published By Cambridge University Press

1469-7785, 0373-4633

2022 ◽  
pp. 1-20
Author(s):  
Amin Basiri ◽  
Valerio Mariani ◽  
Giuseppe Silano ◽  
Muhammad Aatif ◽  
Luigi Iannelli ◽  
...  

Abstract Multi-rotor Unmanned Aerial Vehicles (UAVs), although originally designed and developed for defence and military purposes, in the last ten years have gained momentum, especially for civilian applications, such as search and rescue, surveying and mapping, and agricultural crops and monitoring. Thanks to their hovering and Vertical Take-Off and Landing (VTOL) capabilities and the capacity to carry out tasks with complete autonomy, they are now a standard platform for both research and industrial uses. However, while the flight control architecture is well established in the literature, there are still many challenges in designing autonomous guidance and navigation systems to make the UAV able to work in constrained and cluttered environments or also indoors. Therefore, the main motivation of this work is to provide a comprehensive and exhaustive literature review on the numerous methods and approaches to address path-planning problems for multi-rotor UAVs. In particular, the inclusion of a review of the related research in the context of Precision Agriculture (PA) provides a unified and accessible presentation for researchers who are initiating their endeavours in this subject.


2022 ◽  
pp. 1-22
Author(s):  
Magdalena I. Asborno ◽  
Sarah Hernandez ◽  
Kenneth N. Mitchell ◽  
Manzi Yves

Abstract Travel demand models (TDMs) with freight forecasts estimate performance metrics for competing infrastructure investments and potential policy changes. Unfortunately, freight TDMs fail to represent non-truck modes with levels of detail adequate for multi-modal infrastructure and policy evaluation. Recent expansions in the availability of maritime movement data, i.e. Automatic Identification System (AIS), make it possible to expand and improve representation of maritime modes within freight TDMs. AIS may be used to track vessel locations as timestamped latitude–longitude points. For estimation, calibration and validation of freight TDMs, this work identifies vessel trips by applying network mapping (map-matching) heuristics to AIS data. The automated methods are evaluated on a 747-mile inland waterway network, with AIS data representing 88% of vessel activity. Inspection of 3820 AIS trajectories was used to train the heuristic parameters including stop time, duration and location. Validation shows 84⋅0% accuracy in detecting stops at ports and 83⋅5% accuracy in identifying trips crossing locks. The resulting map-matched vessel trips may be applied to generate origin–destination matrices, calculate time impedances, etc. The proposed methods are transferable to waterways or maritime port systems, as AIS continues to grow.


2022 ◽  
pp. 1-20
Author(s):  
Shiyu Bai ◽  
Jizhou Lai ◽  
Pin Lyu ◽  
Yiting Cen ◽  
Bingqing Wang ◽  
...  

Determination of calibration parameters is essential for the fusion performance of an inertial measurement unit (IMU) and odometer integrated navigation system. Traditional calibration methods are commonly based on the filter frame, which limits the improvement of the calibration accuracy. This paper proposes a graph-optimisation-based self-calibration method for the IMU/odometer using preintegration theory. Different from existing preintegrations, the complete IMU/odometer preintegration model is derived, which takes into consideration the effects of the scale factor of the odometer, and misalignments in the attitude and position between the IMU and odometer. Then the calibration is implemented by the graph-optimisation method. The KITTI dataset and field experimental tests are carried out to evaluate the effectiveness of the proposed method. The results illustrate that the proposed method outperforms the filter-based calibration method. Meanwhile, the performance of the proposed IMU/odometer preintegration model is optimal compared with the traditional preintegration models.


2022 ◽  
pp. 1-18
Author(s):  
Binghua Shi ◽  
Yixin Su ◽  
Cheng Lian ◽  
Chang Xiong ◽  
Yang Long ◽  
...  

Abstract Recognition of obstacle type based on visual sensors is important for navigation by unmanned surface vehicles (USV), including path planning, obstacle avoidance, and reactive control. Conventional detection techniques may fail to distinguish obstacles that are similar in visual appearance in a cluttered environment. This work proposes a novel obstacle type recognition approach that combines a dilated operator with the deep-level features map of ResNet50 for autonomous navigation. First, visual images are collected and annotated from various different scenarios for USV test navigation. Second, the deep learning model, based on a dilated convolutional neural network, is set and trained. Dilated convolution allows the whole network to learn deep features with increased receptive field and further improves the performance of obstacle type recognition. Third, a series of evaluation parameters are utilised to evaluate the obtained model, such as the mean average precision (mAP), missing rate and detection speed. Finally, some experiments are designed to verify the accuracy of the proposed approach using visual images in a cluttered environment. Experimental results demonstrate that the dilated convolutional neural network obtains better recognition performance than the other methods, with an mAP of 88%.


2021 ◽  
pp. 1-21
Author(s):  
Xiao Liang ◽  
Carl Milner ◽  
Christophe Macabiau ◽  
Philippe Estival

Abstract Distance measuring equipment (DME/DME) as the main reversionary method provides alternative positioning, navigation and timing (A-PNT) services for use during a Global Navigation Satellite System (GNSS) outage. Considering the geometry limitation of DME/DME, multi-DMEs with better geometry can be used to increase the accuracy and integrity performance of positioning. This paper discusses the opportunities and challenges related to use of multi-DMEs as an alternate source of positioning, navigation and timing. To support the performance for A-PNT, the basic idea is considering the existing installed equipment. In this paper, barometer altimeter and TACAN are used to help improve the performance of A-PNT provided by multi-DMEs both in accuracy and integrity. Based on the database of EUROCONTROL, the test results demonstrate that 79⋅7% of a reference area roughly matching with the continental European locations achieve RNP 1 using multi-DMEs when the DME measurement accuracy is 0⋅2 NM (95%). When the DME measurement accuracy is 0⋅1 NM (95%), 87⋅9% of the reference area can achieve RNP 1 using multi-DMEs. The usage of barometer/TACAN measurements aided multi-DMEs improves the performance of the accuracy and integrity monitoring.


2021 ◽  
pp. 1-11
Author(s):  
Zhifeng Han ◽  
Zheng Fang

Abstract In traditional satellite navigation receivers, the parameters of tracking loop such as loop bandwidth and integration time are usually set in the design of the receivers according to different scenarios. The signal tracking performance is limited in traditional receivers. In addition, when the tracking ability of weak signals is improved by extending the integration time, negative effect of residual frequency error becomes more and more serious with extension of the integration time. To solve these problems, this paper presents out research on receiver tracking algorithms and proposes an optimised tracking algorithm with inertial information. The receiver loop filter is designed based on Kalman filter, reducing the phase jitter caused by thermal noise in the weak signal environment and improving the signal tracking sensitivity. To confirm the feasibility of the proposed algorithm, simulation tests are conducted.


2021 ◽  
pp. 1-13
Author(s):  
Gareth Wimpenny ◽  
Jan Šafář ◽  
Alan Grant ◽  
Martin Bransby

Abstract The civilian Automatic Identification System (AIS) has no inherent protection against spoofing. Spoofed AIS messages have the potential to interfere with the safe navigation of a vessel by, amongst other approaches, spoofing maritime virtual aids to navigation and/or differential global navigation satellite system (DGNSS) correction data conveyed across it. Acting maliciously, a single transmitter may spoof thousands of AIS messages per minute with the potential to cause considerable nuisance; compromising information provided by AIS intended to enhance the mariner's situational awareness. This work describes an approach to authenticate AIS messages using public key cryptography (PKC) and thus provide unequivocal evidence that AIS messages originate from genuine sources and so can be trusted. Improvements to the proposed AIS authentication scheme are identified which address a security weakness and help avoid false positives to spoofing caused by changes to message syntax. A channel loading investigation concludes that sufficient bandwidth is available to routinely authenticate all AIS messages whilst retaining backwards compatibility by carrying PKC ‘digital signatures’ in a separate VHF Data Exchange System (VDES) side channel.


2021 ◽  
pp. 1-18
Author(s):  
Zhipeng Shen ◽  
Xuechun Fan ◽  
Haomiao Yu ◽  
Chen Guo ◽  
Saisai Wang

Abstract This paper proposes a novel speed optimisation scheme for unmanned sailboats by sliding mode extremum seeking control (SMESC) without steady-state oscillation. In the sailing speed optimisation scheme, an initial sail angle of attack is first computed by a piecewise constant function in the feed forward block, which ensures a small deviation between sailing speed and the maximum speed. Second, the sailing speed approaches to maximum gradually by extremum search control (ESC) in the feedback block. In SMESC without steady-state oscillation, a switching law is designed to carry out the control transformation, so that the speed optimisation system carries out SMESC in the first convergence phase and ESC without steady-state oscillation in the second stability phase. This scheme combines the advantages of both control algorithms to maintain a faster convergence rate and to eliminate steady-state oscillation. Furthermore, the strict stability of the speed optimisation system is proved in this paper. Finally, we test a 12-m mathematical model of an unmanned sailboat in the simulation to demonstrate the effectiveness and robustness of this speed optimisation scheme.


2021 ◽  
pp. 1-23
Author(s):  
Bing Hua ◽  
Shenggang Sun ◽  
Yunhua Wu ◽  
Zhiming Chen

Abstract To solve the problem of spacecraft attitude manoeuvre planning under dynamic multiple mandatory pointing constraints and prohibited pointing constraints, a systematic attitude manoeuvre planning approach is proposed that is based on improved policy gradient reinforcement learning. This paper presents a succinct model of dynamic multiple constraints that is similar to a real situation faced by an in-orbit spacecraft. By introducing return baseline and adaptive policy exploration methods, the proposed method overcomes issues such as large variances and slow convergence rates. Concurrently, the required computation time of the proposed method is markedly reduced. Using the proposed method, the near optimal path of the attitude manoeuvre can be determined, making the method suitable for the control of micro spacecraft. Simulation results demonstrate that the planning results fully satisfy all constraints, including six prohibited pointing constraints and two mandatory pointing constraints. The spacecraft also maintains high orientation accuracy to the Earth and Sun during all attitude manoeuvres.


2021 ◽  
pp. 1-19
Author(s):  
Rong Zhen ◽  
Ziqiang Shi ◽  
Zheping Shao ◽  
Jialun Liu

Abstract The regional ship collision risk assessment for multiple ships in restricted waters is of great significance to the early warning of ship collision risk and the intelligent supervision of maritime traffic. Given the existed method of regional ship collision risk assessment without considering the impact of ship aggregation density, this paper proposes a novel regional ship collision risk assessment method that considers the aggregation density (AD) of the clusters of encounter ships (CES) for intelligent surveillance and navigation. The effectiveness of the proposed method has been examined by the experimental case study in the waters of Xiamen, China, and analysis has been compared with other existed studies to show the advantages of the new proposed algorithm. The results show that the study method can more intuitively and effectively quantify the temporal and spatial distribution of regional collision risks in the restricted sea area. The proposed method can improve the efficiency of traffic management when monitoring the ship collision risks in macroscopic view, and assist the safety of manned and unmanned ship navigation.


Sign in / Sign up

Export Citation Format

Share Document