Neonatal monocular enucleation and the geniculo-cortical system in the golden hamster: Shrinkage in dorsal lateral geniculate nucleus and area 17 and the effects on relay cell size and number

1995 ◽  
Vol 12 (5) ◽  
pp. 971-983 ◽  
Author(s):  
A.J. Trevelyan ◽  
I.D. Thompson

AbstractWe have examined the effects of neonatal monocular enucleation on the volume of the dorsal lateral geniculate nucleus (dLGN), the area of area 17, and the size and numbers of geniculate relay neurons identified by retrograde transport of HRP from cortex. Compared to values for normal animals, the only significant change contralateral to the remaining eye was an increase in relay cell radius. The effects ipsilateral to the remaining eye were more widespread: we found significant reductions in the volume of the dLGN (27% reduction), the area of striate cortex (22%), and the number (16%) and average soma radius (6%) of geniculate relay neurons. The relay neurons were also more densely packed, suggesting that other geniculate cell types were affected similarly, although this was not explicitly examined. These changes were not uniform throughout the nucleus, and as such, reflected the changes in retinal input. The greatest reduction in cell size occurred in the region of the ipsilateral dLGN receiving the most sparse retinal input subsequent to enucleation. Nor was the shrinkage of the dLGN uniform, being most apparent in the coronal plane especially along the axis orthogonal to the pia; there appeared to be little change in the anteroposterior extent. Shrinkage in area 17 ipsilateral to the remaining eye was the same (about 22%) whether it was defined by myelin staining or transneuronal transport of WGA-HRP. These results show that the transneuronal changes seen in the organization of visual cortex after early monocular enucleation in rodents are associated with only a moderate loss of geniculate relay cells.

2004 ◽  
Vol 48 (4) ◽  
pp. 387-396 ◽  
Author(s):  
Lourdes Vidal ◽  
Concepción Ruı́z ◽  
Alicia Villena ◽  
Florentina Dı́az ◽  
Ignacio Pérez de Vargas

2000 ◽  
Vol 17 (6) ◽  
pp. 855-870 ◽  
Author(s):  
O. RUKSENAS ◽  
I.T. FJELD ◽  
P. HEGGELUND

Spatial summation and degree of center-surround antagonism were examined in the receptive field of nonlagged cells in the dorsal lateral geniculate nucleus (dLGN). We recorded responses to stationary light or dark circular spots that were stepwise varied in width. The spots were centered on the receptive field. For a sample of nonlagged X-cells, we made simultaneous recordings of action potentials and S-potentials, and could thereby compare spatial summation in the dLGN cell and in the retinal input to the cell. Plots of response versus spot diameter showed that the response for a dLGN cell was consistently below the response in the retinal input at all spot sizes. There was a marked increase of antagonism at the retinogeniculate relay. The difference between the retinal input and dLGN cell response suggested that the direct retinal input to a relay cell is counteracted in dLGN by an inhibitory field that has an antagonistic center-surround organization. The inhibitory field seems to have the same center sign (ON- or OFF-center), but a wider receptive-field center than the direct retinal input to the relay cell. The broader center of the inhibitory field can explain the increased center-surround antagonism at the retinogeniculate relay. The ratio between the response of a dLGN cell and its retinal input (transfer ratio) varied with spot width. This variation did not necessarily reflect a nonlinearity at the retinogeniculate relay. Plots of dLGN cell response against retinal input were piecewise linear, suggesting that both excitatory and inhibitory transmission in dLGN are close to linear. The variation in transfer ratio could be explained by sustained suppression evoked by the background stimulation, because such suppression has relatively stronger effect on the response to a spot evoking weak response than to a spot evoking a strong response. A simple model for the spatial receptive-field organization of nonlagged X-cells, that is consistent with our findings, is presented.


Sign in / Sign up

Export Citation Format

Share Document