A stable universal domain related to ω

2015 ◽  
Vol 27 (4) ◽  
pp. 540-556 ◽  
Author(s):  
HAORAN ZHAO ◽  
HUI KOU

In 1978, G. Plotkin noticed that $\mathbb{T}$ω, the cartesian product of ω copies of the three element flat domain of Booleans, is a universal domain, where ‘universal’ means that the retracts of $\mathbb{T}$ω for Scott's continuous semantics are exactly all the ωCC-domains, which with Scott continuous functions form a cartesian closed category. As usual, ‘ω’ is for ‘countably based,’ and here ‘CC’ is for ‘conditionally complete,’ which essentially means that any subset which is pairwise bounded has a least upper bound. Since $\mathbb{T}$ω is also an ωDI-domain (an important structure in stable domain theory), the following problem arises naturally: is there a cartesian closed category C of domains with stable functions such that $\mathbb{T}$ω, or a related structure, is universal in C for Berry’s stable semantics? The aim of this paper is to answer this question. We first investigate the properties of stable retracts. We introduce a new class of domains called conditionally complete DI-domains (CCDI-domain for short) and show that, (1) $\mathbb{T}$ω is an ωCCDI-domain and the category of CCDI-domains (resp. ωCCDI-domains) with stable functions is cartesian closed; (2) [$\mathbb{T}$ω →st$\mathbb{T}$ω] is a stable universal domain in the sense that every ωCCDI-domain is a stable retract of [$\mathbb{T}$ω → st$\mathbb{T}$ω], where [$\mathbb{T}$ω → st$\mathbb{T}$ω] is the stable function space of $\mathbb{T}$ω; (3) in particular, [$\mathbb{T}$ω → st$\mathbb{T}$ω] is not a stable retract of $\mathbb{T}$ω and hence $\mathbb{T}$ω is not universal for Berry’s stable semantics. We remark that this paper is a completion and correction of our earlier report in the Proceedings of the 6th International Symposium on Domain Theory and Its Applications (ISDT2013).

1997 ◽  
Vol 7 (5) ◽  
pp. 591-618 ◽  
Author(s):  
MARCELO P. FIORE

Domain-theoretic categories are axiomatised by means of categorical non-order-theoretic requirements on a cartesian closed category equipped with a commutative monad. In this paper we prove an enrichment theorem showing that every axiomatic domain-theoretic category can be endowed with an intensional notion of approximation, the path relation, with respect to which the category Cpo-enriches.Our analysis suggests more liberal notions of domains. In particular, we present a category where the path order is not ω-complete, but in which the constructions of domain theory (such as, for example, the existence of uniform fixed-point operators and the solution of domain equations) are available.


2014 ◽  
Vol 2014 ◽  
pp. 1-4
Author(s):  
Yayan Yuan ◽  
Jibo Li

We introduce a new construction—FS+-domain—and prove that the category withFS+-domains as objects and Scott continuous functions as morphisms is a Cartesian closed category. We obtain that the Plotkin powerdomainPP(L)over anFS-domainLis anFS+-domain.


2008 ◽  
Vol 18 (3) ◽  
pp. 613-643 ◽  
Author(s):  
ERNIE MANES ◽  
PHILIP MULRY

In this paper we introduce the concept of Kleisli strength for monads in an arbitrary symmetric monoidal category. This generalises the notion of commutative monad and gives us new examples, even in the cartesian-closed category of sets. We exploit the presence of Kleisli strength to derive methods for generating distributive laws. We also introduce linear equations to extend the results to certain quotient monads. Mechanisms are described for finding strengths that produce a large collection of new distributive laws, and consequently monad compositions, including the composition of monadic data types such as lists, trees, exceptions and state.


Author(s):  
Ieke Moerdijk ◽  
Gonzalo E. Reyes

It has been persuasively argued (e.g. by Lawvere[8]) that the mathematical world picture needed to develop the physics of continuous bodies and fields should involve a cartesian closed category of smooth morphisms between smooth spaces. As far as the foundations of the calculus of variations are concerned, the need for such a category was recognized by K. T. Chen(cf. [2]).


Sign in / Sign up

Export Citation Format

Share Document