<p style='text-indent:20px;'>The length function <inline-formula><tex-math id="M3">\begin{document}$ \ell_q(r,R) $\end{document}</tex-math></inline-formula> is the smallest length of a <inline-formula><tex-math id="M4">\begin{document}$ q $\end{document}</tex-math></inline-formula>-ary linear code with codimension (redundancy) <inline-formula><tex-math id="M5">\begin{document}$ r $\end{document}</tex-math></inline-formula> and covering radius <inline-formula><tex-math id="M6">\begin{document}$ R $\end{document}</tex-math></inline-formula>. In this work, new upper bounds on <inline-formula><tex-math id="M7">\begin{document}$ \ell_q(tR+1,R) $\end{document}</tex-math></inline-formula> are obtained in the following forms:</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{equation*} \begin{split} &(a)\; \ell_q(r,R)\le cq^{(r-R)/R}\cdot\sqrt[R]{\ln q},\; R\ge3,\; r = tR+1,\; t\ge1,\\ &\phantom{(a)\; } q\;{\rm{ is \;an\; arbitrary \;prime\; power}},\; c{\rm{ \;is\; independent \;of\; }}q. \end{split} \end{equation*} $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE2"> \begin{document}$ \begin{equation*} \begin{split} &(b)\; \ell_q(r,R)< 3.43Rq^{(r-R)/R}\cdot\sqrt[R]{\ln q},\; R\ge3,\; r = tR+1,\; t\ge1,\\ &\phantom{(b)\; } q\;{\rm{ is \;an\; arbitrary\; prime \;power}},\; q\;{\rm{ is \;large\; enough}}. \end{split} \end{equation*} $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>In the literature, for <inline-formula><tex-math id="M8">\begin{document}$ q = (q')^R $\end{document}</tex-math></inline-formula> with <inline-formula><tex-math id="M9">\begin{document}$ q' $\end{document}</tex-math></inline-formula> a prime power, smaller upper bounds are known; however, when <inline-formula><tex-math id="M10">\begin{document}$ q $\end{document}</tex-math></inline-formula> is an arbitrary prime power, the bounds of this paper are better than the known ones.</p><p style='text-indent:20px;'>For <inline-formula><tex-math id="M11">\begin{document}$ t = 1 $\end{document}</tex-math></inline-formula>, we use a one-to-one correspondence between <inline-formula><tex-math id="M12">\begin{document}$ [n,n-(R+1)]_qR $\end{document}</tex-math></inline-formula> codes and <inline-formula><tex-math id="M13">\begin{document}$ (R-1) $\end{document}</tex-math></inline-formula>-saturating <inline-formula><tex-math id="M14">\begin{document}$ n $\end{document}</tex-math></inline-formula>-sets in the projective space <inline-formula><tex-math id="M15">\begin{document}$ \mathrm{PG}(R,q) $\end{document}</tex-math></inline-formula>. A new construction of such saturating sets providing sets of small size is proposed. Then the <inline-formula><tex-math id="M16">\begin{document}$ [n,n-(R+1)]_qR $\end{document}</tex-math></inline-formula> codes, obtained by geometrical methods, are taken as the starting ones in the lift-constructions (so-called "<inline-formula><tex-math id="M17">\begin{document}$ q^m $\end{document}</tex-math></inline-formula>-concatenating constructions") for covering codes to obtain infinite families of codes with growing codimension <inline-formula><tex-math id="M18">\begin{document}$ r = tR+1 $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M19">\begin{document}$ t\ge1 $\end{document}</tex-math></inline-formula>.</p>