Numerical methods for nonlinear equations

Acta Numerica ◽  
2018 ◽  
Vol 27 ◽  
pp. 207-287 ◽  
Author(s):  
C. T. Kelley

This article is about numerical methods for the solution of nonlinear equations. We consider both the fixed-point form $\mathbf{x}=\mathbf{G}(\mathbf{x})$ and the equations form $\mathbf{F}(\mathbf{x})=0$ and explain why both versions are necessary to understand the solvers. We include the classical methods to make the presentation complete and discuss less familiar topics such as Anderson acceleration, semi-smooth Newton’s method, and pseudo-arclength and pseudo-transient continuation methods.

2012 ◽  
Vol 220-223 ◽  
pp. 2585-2588
Author(s):  
Zhong Yong Hu ◽  
Fang Liang ◽  
Lian Zhong Li ◽  
Rui Chen

In this paper, we present a modified sixth order convergent Newton-type method for solving nonlinear equations. It is free from second derivatives, and requires three evaluations of the functions and two evaluations of derivatives per iteration. Hence the efficiency index of the presented method is 1.43097 which is better than that of classical Newton’s method 1.41421. Several results are given to illustrate the advantage and efficiency the algorithm.


IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Rami Sihwail ◽  
Obadah Said Solaiman ◽  
Khairuddin Omar ◽  
Khairul Akram Zainol Ariffin ◽  
Mohammed Alswaitti ◽  
...  

SPIN ◽  
2021 ◽  
pp. 2140004
Author(s):  
Cheng Xue ◽  
Yuchun Wu ◽  
Guoping Guo

While quantum computing provides an exponential advantage in solving the system of linear equations, there is little work to solve the system of nonlinear equations with quantum computing. We propose quantum Newton’s method (QNM) for solving [Formula: see text]-dimensional system of nonlinear equations based on Newton’s method. In QNM, we solve the system of linear equations in each iteration of Newton’s method with quantum linear system solver. We use a specific quantum data structure and [Formula: see text] tomography with sample error [Formula: see text] to implement the classical-quantum data conversion process between the two iterations of QNM, thereby constructing the whole process of QNM. The complexity of QNM in each iteration is [Formula: see text]. Through numerical simulation, we find that when [Formula: see text], QNM is still effective, so the complexity of QNM is sublinear with [Formula: see text], which provides quantum advantage compared with the optimal classical algorithm.


Author(s):  
Scott A. Burns

Abstract A monomial-based method for solving systems of algebraic nonlinear equations is presented. The method uses the arithmetic-geometric mean inequality to construct a system of monomial equations that approximates the system of nonlinear equations. This “monomial method” is closely related to Newton’s method, yet exhibits many special properties not shared by Newton’s method that enhance performance. These special properties are discussed in relation to engineering design optimization.


Sign in / Sign up

Export Citation Format

Share Document