First experiences with Myval Transcatheter Heart Valve System in the treatment of severe pulmonary regurgitation in native right ventricular outflow tract and conduit dysfunction

2021 ◽  
pp. 1-7
Author(s):  
Ender Odemis ◽  
Irem Yenidogan

Abstract The rate of morbidity and mortality related to pulmonary regurgitation and pulmonary stenosis are big concerns after the surgery for CHD. Percutaneous pulmonary valve implantation has been established as a less invasive technique compared to surgery with promising results according to long-term follow-up of the patients. There are only two approved valve options for percutaneous pulmonary valve implantation until now, which are Melody (Medtronic, Minneapolis, Minn, USA) and Sapien (Edwards Lifesciences, Irvine, Ca, USA). Both valves have limitations and do not cover entire patient population. Therefore, the cardiologists need more options to improve outcomes with fewer complications in a such promising area. Herein, we present a case series applying for pulmonary position in conduits and native right ventricular outflow tract of a new transcatheter valve system Myval ® which is designed for transcatheter aortic valve implantation procedures. This is the first patient series in which the use of Myvalv in dysfunctional right ventricular outflow tracts is described, after surgical repair of CHD.

2019 ◽  
Vol 10 ◽  
pp. 204062231985763 ◽  
Author(s):  
Liyu Ran ◽  
Wuwan Wang ◽  
Francesco Secchi ◽  
Yajie Xiang ◽  
Wenhai Shi ◽  
...  

Background: Pulmonary valve replacement is required for patients with right ventricular outflow tract (RVOT) dysfunction. Surgical and percutaneous pulmonary valve replacement are the treatment options. Percutaneous pulmonary valve implantation (PPVI) provides a less-invasive therapy for patients. The aim of this study was to evaluate the effectiveness and safety of PPVI and the optimal time for implantation. Methods: We searched PubMed, EMBASE, Clinical Trial, and Google Scholar databases covering the period until May 2018. The primary effectiveness endpoint was the mean RVOT gradient; the secondary endpoints were the pulmonary regurgitation fraction, left and right ventricular end-diastolic and systolic volume indexes, and left ventricular ejection fraction. The safety endpoints were the complication rates. Results: A total of 20 studies with 1246 participants enrolled were conducted. The RVOT gradient decreased significantly [weighted mean difference (WMD) = −19.63 mmHg; 95% confidence interval (CI): −21.15, −18.11; p < 0.001]. The right ventricular end-diastolic volume index (RVEDVi) was improved (WMD = −17.59 ml/m²; 95% CI: −20.93, −14.24; p < 0.001), but patients with a preoperative RVEDVi >140 ml/m² did not reach the normal size. Pulmonary regurgitation fraction (PRF) was notably decreased (WMD = −26.27%, 95% CI: −34.29, −18.25; p < 0.001). The procedure success rate was 99% (95% CI: 98–99), with a stent fracture rate of 5% (95% CI: 4–6), the pooled infective endocarditis rate was 2% (95% CI: 1–4), and the incidence of reintervention was 5% (95% CI: 4–6). Conclusions: In patients with RVOT dysfunction, PPVI can relieve right ventricular remodeling, improving hemodynamic and clinical outcomes.


Sign in / Sign up

Export Citation Format

Share Document