The Elusive Radio Source SN 1987A

1988 ◽  
Vol 7 (4) ◽  
pp. 382-383
Author(s):  
John E. Reynolds ◽  
R.W. Livermore ◽  
David L. Jauncey ◽  
Robert A. Preston ◽  
Samuel Gulkis ◽  
...  

AbstractFollowing the ‘prompt’ radio outburst seen soon after the neutrino emission in SN 1987A (Turtle et al. 1987), we initiated a program to monitor the supernova at the Tidbinbilla Deep Space Communications Complex at 8.4 GHz in a search for radio emission from the expanding remnant. No radio emission has been detected to date (DOY 151, May 30 1988).

1996 ◽  
Vol 145 ◽  
pp. 309-315 ◽  
Author(s):  
L. Staveley-Smith ◽  
R. N. Manchester ◽  
A. K. Tzioumis ◽  
J. E. Reynolds ◽  
D. S. Briggs

We review the first six years of radio observations of Supernova 1987A. The evolution can be divided into two phases: the initial radio outburst which lasted a few weeks, and the period from mid-1990 to the present, during which the radio emission has steadily increased. Both phases can be explained by a small fraction (0.1-0.5%) of the post-shock thermal energy being converted to energy in relativistic particles and magnetic fields, which give rise to synchrotron radiation. The optical depths, densities and density profiles for the pre-shocked circumstellar material are somewhat different for the two phases, but consistent with models of the density structure of the material within the circumstellar ring. New high-resolution radio observations show that the SN shock front is already at about three-quarters of the radius of the circumstellar ring, and that there exists a bright equatorial component of emission aligned with this ring which is probably due to a polar density gradient in the ‘hourglass’ structure.


2004 ◽  
Vol 2 (5) ◽  
pp. 12-15
Author(s):  
M. Williamson

Author(s):  
Masamitsu Mori ◽  
Yudai Suwa ◽  
Ken’ichiro Nakazato ◽  
Kohsuke Sumiyoshi ◽  
Masayuki Harada ◽  
...  

Abstract Massive stars can explode as supernovae at the end of their life cycle, releasing neutrinos whose total energy reaches 1053erg. Moreover, neutrinos play key roles in supernovae, heating and reviving the shock wave as well as cooling the resulting proto-neutron star. Therefore, neutrino detectors are waiting to observe the next galactic supernova and several theoretical simulations of supernova neutrinos are underway. While these simulation concentrate mainly on only the first one second after the supernova bounce, the only observation of a supernova with neutrinos, SN 1987A, revealed that neutrino emission lasts for more than 10 seconds. For this reason, long-time simulation and analysis tools are needed to compare theories with the next observation. Our study is to develop an integrated supernova analysis framework to prepare an analysis pipeline for treating galactic supernovae observations in the near future. This framework deals with the core-collapse, bounce and proto-neutron star cooling processes, as well as with neutrino detection on earth in a consistent manner. We have developed a new long-time supernova simulation in one dimension that explodes successfully and computes the neutrino emission for up to 20 seconds. Using this model we estimate the resulting neutrino signal in the Super-Kamiokande detector to be about 1,800 events for an explosion at 10 kpc and discuss its implications in this paper. We compare this result with the SN 1987A observation to test its reliability.


Sign in / Sign up

Export Citation Format

Share Document