radio observations
Recently Published Documents


TOTAL DOCUMENTS

1179
(FIVE YEARS 86)

H-INDEX

55
(FIVE YEARS 6)

Galaxies ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 117
Author(s):  
Sinenhlanhla P. Sikhosana ◽  
Kenda Knowles ◽  
C. H. Ishwara-Chandra ◽  
Matt Hilton ◽  
Kavilan Moodley ◽  
...  

Low frequency radio observations of galaxy clusters are a useful probe of the non-thermal intracluster medium (ICM), through observations of diffuse radio emission such as radio halos and relics. Current formation theories cannot fully account for some of the observed properties of this emission. In this study, we focus on the development of interferometric techniques for extracting extended, faint diffuse emissions in the presence of bright, compact sources in wide-field and broadband continuum imaging data. We aim to apply these techniques to the study of radio halos, relics and radio mini-halos using a uniformly selected and complete sample of galaxy clusters selected via the Sunyaev-Zel’dovich (SZ) effect by the Atacama Cosmology Telescope (ACT) project, and its polarimetric extension (ACTPol). We use the upgraded Giant Metrewave Radio Telescope (uGMRT) for targeted radio observations of a sample of 40 clusters. We present an overview of our sample, confirm the detection of a radio halo in ACT−CL J0034.4+0225, and compare the narrowband and wideband analysis results for this cluster. Due to the complexity of the ACT−CL J0034.4+0225 field, we use three pipelines to process the wideband data. We conclude that the experimental spam wideband pipeline produces the best results for this particular field. However, due to the severe artefacts in the field, further analysis is required to improve the image quality.


2021 ◽  
Vol 923 (1) ◽  
pp. 32
Author(s):  
A. Balasubramanian ◽  
A. Corsi ◽  
E. Polisensky ◽  
T. E. Clarke ◽  
N. E. Kassim

Abstract The study of stripped-envelope core-collapse supernovae (SNe), with evidence for strong interaction of SN ejecta with the circumstellar medium (CSM), provides insights into the pre-supernova progenitor, and a fast-forwarded view of the progenitor mass-loss history. In this context, we present late-time radio observations of SN 2004dk, a Type Ibc supernova located in the galaxy NGC 6118, at a distance of d L ≈ 23 Mpc. About 10 yr after explosion, SN 2004dk has shown evidence for Hα emission, possibly linked to the SN ejecta interacting with a H-rich CSM. Using data from the VLA Low Band Ionosphere and Transient Experiment (VLITE), we confirm the presence of a late-time radio rebrightening accompanying the observed Hα emission. We model the SN 2004dk radio light curves within the (spherically symmetric) synchrotron-self-absorption (SSA) model. Within this model, our VLITE observations combined with previously collected VLA data favor an interpretation of SN 2004dk as a strongly CSM-interacting radio SN going through a complex environment shaped by nonsteady mass loss from the SN progenitor.


2021 ◽  
Vol 923 (2) ◽  
pp. 270
Author(s):  
Hauyu Baobab Liu ◽  
An-Li Tsai ◽  
Wen Ping Chen ◽  
Jin Zhong Liu ◽  
Xuan Zhang ◽  
...  

Abstract Previous observations have shown that the ≲10 au, ≳400 K hot inner disk of the archetypal accretion outburst young stellar object, FU Ori, is dominated by viscous heating. To constrain dust properties in this region, we have performed radio observations toward this disk using the Karl G. Jansky Very Large Array in 2020 June–July, September, and November. We also performed complementary optical photometric monitoring observations. We found that the dust thermal emission from the hot inner disk mid-plane of FU Ori has been approximately stationary and the maximum dust grain size is ≳1.6 mm in this region. If the hot inner disk of FU Ori, which is inward of the 150–170 K water snowline, is turbulent (e.g., corresponding to a Sunyaev & Shakura viscous α t ≳ 0.1), or if the actual maximum grain size is still larger than the lower limit we presently constrain, then as suggested by the recent analytical calculations and the laboratory measurements, water-ice-free dust grains may be stickier than water-ice-coated dust grains in protoplanetary disks. Additionally, we find that the free–free emission and the Johnson B- and V-band magnitudes of these binary stars were brightening in 2016–2020. The optical and radio variability might be related to the dynamically evolving protostellar- or disk-accretion activities. Our results highlight that the hot inner disks of outbursting objects are important laboratories for testing models of dust grain growth. Given the active nature of such systems, to robustly diagnose the maximum dust grain sizes, it is important to carry out coordinated multiwavelength radio observations.


2021 ◽  
Vol 162 (6) ◽  
pp. 270
Author(s):  
Gordon T. Richards ◽  
Trevor V. McCaffrey ◽  
Amy Kimball ◽  
Amy L. Rankine ◽  
James H. Matthews ◽  
...  

Abstract We discuss a probe of the contribution of wind-related shocks to the radio emission in otherwise radio-quiet quasars. Given (1) the nonlinear correlation between UV and X-ray luminosity in quasars, (2) that such a correlation leads to higher likelihood of radiation-line-driven winds in more luminous quasars, and (3) that luminous quasars are more abundant at high redshift, deep radio observations of high-redshift quasars are needed to probe potential contributions from accretion disk winds. We target a sample of 50 z ≃ 1.65 color-selected quasars that span the range of expected accretion disk wind properties as traced by broad C iv emission. 3 GHz observations with the Very Large Array to an rms of ≈10 μJy beam−1 probe to star formation rates of ∼400 M ⊙ yr−1, leading to 22 detections. Supplementing these pointed observations are survey data of 388 sources from the LOFAR Two-meter Sky Survey Data Release 1 that reach comparable depth (for a typical radio spectral index), where 123 sources are detected. These combined observations reveal a radio detection fraction that is a nonlinear function of C iv emission-line properties and suggest that the data may require multiple origins of radio emission in radio-quiet quasars. We find evidence for radio emission from weak jets or coronae in radio-quiet quasars with low Eddington ratios, with either (or both) star formation and accretion disk winds playing an important role in optically luminous quasars and correlated with increasing Eddington ratio. Additional pointed radio observations are needed to fully establish the nature of radio emission in radio-quiet quasars.


Galaxies ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 109
Author(s):  
Franco Vazza ◽  
Nicola Locatelli ◽  
Kamlesh Rajpurohit ◽  
Serena Banfi ◽  
Paola Domínguez-Fernández ◽  
...  

The detection of the radio signal from filaments in the cosmic web is crucial to distinguish possible magnetogenesis scenarios. We review the status of the different attempts to detect the cosmic web at radio wavelengths. This is put into the context of the advanced simulations of cosmic magnetism carried out in the last few years by our MAGCOW project. While first attempts of imaging the cosmic web with the MWA and LOFAR have been encouraging and could discard some magnetogenesis models, the complexity behind such observations makes a definitive answer still uncertain. A combination of total intensity and polarimetric data at low radio frequencies that the SKA and LOFAR2.0 will achieve is key to removing the existing uncertainties related to the contribution of many possible sources of signal along deep lines of sight. This will make it possible to isolate the contribution from filaments, and expose its deep physical connection with the origin of extragalactic magnetism.


Universe ◽  
2021 ◽  
Vol 7 (11) ◽  
pp. 453
Author(s):  
Manisha Caleb ◽  
Evan Keane

Fast radio bursts (FRBs) have a story which has been told and retold many times over the past few years as they have sparked excitement and controversy since their pioneering discovery in 2007. The FRB class encompasses a number of microsecond- to millisecond-duration pulses occurring at Galactic to cosmological distances with energies spanning about 8 orders of magnitude. While most FRBs have been observed as singular events, a small fraction of them have been observed to repeat over various timescales leading to an apparent dichotomy in the population. ∼50 unique progenitor theories have been proposed, but no consensus has emerged for their origin(s). However, with the discovery of an FRB-like pulse from the Galactic magnetar SGR J1935+2154, magnetar engine models are the current leading theory. Overall, FRB pulses exhibit unique characteristics allowing us to probe line-of-sight magnetic field strengths, inhomogeneities in the intergalactic/interstellar media, and plasma turbulence through an assortment of extragalactic and cosmological propagation effects. Consequently, they are formidable tools to study the Universe. This review follows the progress of the field between 2007 and 2020 and presents the science highlights of the radio observations.


Galaxies ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 90
Author(s):  
Viral Parekh ◽  
Robert Kincaid ◽  
Benjamin Hugo ◽  
Athanaseus Ramaila ◽  
Nadeem Oozeer

Superclusters and galaxy clusters offer a wide range of astrophysical science topics with regards to studying the evolution and distribution of galaxies, intra-cluster magnetization mediums, cosmic ray accelerations and large scale diffuse radio sources all in one observation. Recent developments in new radio telescopes and advanced calibration software have completely changed data quality that was never possible with old generation telescopes. Hence, radio observations of superclusters are a very promising avenue to gather rich information of a large-scale structure (LSS) and their formation mechanisms. These newer wide-band and wide field-of-view (FOV) observations require state-of-the-art data analysis procedures, including calibration and imaging, in order to provide deep and high dynamic range (DR) images with which to study the diffuse and faint radio emissions in supercluster environments. Sometimes, strong point sources hamper the radio observations and limit the achievement of a high DR. In this paper, we have shown the DR improvements around strong radio sources in the MeerKAT observation of the Saraswati supercluster by applying newer third-generation calibration (3GC) techniques using CubiCal and killMS software. We have also calculated the statistical parameters to quantify the improvements around strong radio sources. This analysis advocates for the use of new calibration techniques to maximize the scientific returns from new-generation telescopes.


2021 ◽  
Vol 921 (1) ◽  
pp. 43
Author(s):  
V. A. Dogiel ◽  
D. O. Chernyshov ◽  
A. V. Ivlev ◽  
A. M. Kiselev ◽  
A. V. Kopyev

Sign in / Sign up

Export Citation Format

Share Document