scholarly journals On transposes of nilpotent matrices over arbitrary rings

1977 ◽  
Vol 23 (3) ◽  
pp. 366-370 ◽  
Author(s):  
Thomas P. Kezlan

AbstractIt is shown that if every nilpotent 2 × 2 matrix over a ring has nilpotent transpose, then the commutator ideal must be contained in the Jacobson radical, thus generalizing a result of R. S. Gupta, who considered the division ring case. Moreover, if the nilpotent elements form an ideal or if the ring satisfies a polynomial identity, then the above property of the transpose implies that in fact the commutator ideal must be nil.

1970 ◽  
Vol 2 (1) ◽  
pp. 107-115 ◽  
Author(s):  
H.G. Moore

I.N. Herstein has shown that an associative ring in which the nilpotent elements are “well-behaved”, and such that every element satisfies a certain polynomial identity, is commutative. This result is generalized here. Specifically, it is shown that an alternative ring R which satisfies the following three properties is commutative:(i) for x ∈ R, there exists an integer n(x) and a polynomial px (t) with integer coefficients such that xn+1p(x) = xn;(ii) for a fixed positive integer m, a a nilpotent and b an arbitrary element of R, a - am commutes with b - bm;(iii) for the same m, a and b, (ab+b)m = (ba+b)m and (ab)m = ambm.Examples are given to show that all three properties are essential, and it is shown that for associative rings certain modified versions of these properties are individually enough to assure that the commutator ideal of the ring is nil.


1974 ◽  
Vol 18 (4) ◽  
pp. 470-473 ◽  
Author(s):  
Efraim P. Armendariz

Baer rings are rings in which the left (right) annihilator of each subset is generated by an idempotent [6]. Closely related to Baer rings are left P.P.-rings; these are rings in which each principal left ideal is projective, or equivalently, rings in which the left annihilator of each element is generated by an idempotent. Both Baer and P.P.-rings have been extensively studied (e.g. [2], [1], [3], [7]) and it is known that both of these properties are not stable relative to the formation of polynomial rings [5]. However we will show that if a ring R has no nonzero nilpotent elements then R[X] is a Baer or P.P.-ring if and only if R is a Baer or P.P.-ring. This generalizes a result of S. Jøndrup [5] who proved stability for commutative P.P.-rings via localizations – a technique which is, of course, not available to us. We also consider the converse to the well-known result that the center of a Baer ring is a Baer ring [6] and show that if R has no nonzero nilpotent elements, satisfies a polynomial identity and has a Baer ring as center, then R must be a Baer ring. We include examples to illustrate that all the hypotheses are needed.


1979 ◽  
Vol 31 (3) ◽  
pp. 542-557
Author(s):  
M. Chacron

Let R be a 2-torsion free simple artinian ring with involution*. The element u of R is said to be unitary if u is invertible with inverse u*. In this paper we shall be concerned with the subalgebras W of R over its centre Z such that uWu* ⊆ W, for all unitaries u of R. We prove that if R has rank superior to 1 over a division ring D containing more than 5 elements and if R is not 4-dimensional then any such subalgebra W must be one of the trivial subalgebras 0, Z or R, under one of the following extra finiteness assumptions: W contains inverses, W satisfies a polynomial identity, the ground division ring D is algebraic, the involution is a conjugate-transpose involution such that D equipped with the induced involution is generated by unitaries.


1979 ◽  
Vol 2 (1) ◽  
pp. 121-126 ◽  
Author(s):  
Mohan S. Putcha ◽  
Adil Yaqub

LetRbe a ring and letNdenote the set of nilpotent elements ofR. Letnbe a nonnegative integer. The ringRis called aθn-ring if the number of elements inRwhich are not inNis at mostn. The following theorem is proved: IfRis aθn-ring, thenRis nil orRis finite. Conversely, ifRis a nil ring or a finite ring, thenRis aθn-ring for somen. The proof of this theorem uses the structure theory of rings, beginning with the division ring case, followed by the primitive ring case, and then the semisimple ring case. Finally, the general case is considered.


1972 ◽  
Vol 15 (1) ◽  
pp. 137-138 ◽  
Author(s):  
W. K. Nicholson

The purpose of this note is to generalize a result of Gulliksen, Ribenboim and Viswanathan which characterized local group rings when both the ring and the group are commutative.We assume throughout that all rings are associative with identity. If R is a ring we call R local if R/J(R) is a division ring where J(R) denotes the Jacobson radical of R. It is well known that R is local if and only if each element of R\J(R) is a unit. We need the following.


Author(s):  
Howard E. Bell ◽  
Adil Yaqub

LetRbe a ring with centerZ, Jacobson radicalJ, and setNof all nilpotent elements. CallRgeneralized periodic-like if for allx∈R∖(N∪J∪Z)there exist positive integersm,nof opposite parity for whichxm−xn∈N∩Z. We identify some basic properties of such rings and prove some results on commutativity.


2010 ◽  
Vol 53 (2) ◽  
pp. 223-229 ◽  
Author(s):  
Chen-Lian Chuang ◽  
Tsiu-Kwen Lee

AbstractLet R be a dense subring of End(DV), where V is a left vector space over a division ring D. If dimDV = ∞, then the range of any nonzero polynomial ƒ (X1, … , Xm) on R is dense in End(DV). As an application, let R be a prime ring without nonzero nil one-sided ideals and 0 ≠ a ∈ R. If a f (x1, … , xm)n(xi) = 0 for all x1, … , xm ∈ R, where n(xi ) is a positive integer depending on x1, … , xm, then ƒ (X1, … , Xm) is a polynomial identity of R unless R is a finite matrix ring over a finite field.


1973 ◽  
Vol 8 (2) ◽  
pp. 181-185 ◽  
Author(s):  
Steve Ligh

Outcalt and Yaqub have extended the Wedderburn Theorem which states that a finite division ring is a field to the case where R is a ring with identity in which every element is either nilpotent or a unit. In this paper we generalize their result to the case where R has a left identity and the set of nilpotent elements is an ideal. We also construct a class of non-commutative rings showing that our generalization of Outcalt and Yaqub's result is real.


1973 ◽  
Vol 16 (3) ◽  
pp. 290-293 ◽  
Author(s):  
Jacques Lewin

We prove here that if F is a finitely generated free associative algebra over the field and R is an ideal of F, then F/R2 is finitely presented if and only if F/R has finite dimension. Amitsur, [1, p. 136] asked whether a finitely generated algebra which is embeddable in matrices over a commutative f algebra is necessarily finitely presented. Let R = F′, the commutator ideal of F, then [4, theorem 6], F/F′2 is embeddable and thus provides a negative answer to his question. Another such example can be found in Small [6]. We also show that there are uncountably many two generator I algebras which satisfy a polynomial identity yet are not embeddable in any algebra of n xn matrices over a commutative algebra.


1986 ◽  
Vol 38 (2) ◽  
pp. 376-386 ◽  
Author(s):  
Heydar Radjavi

A collection of matrices over a field F is said to be triangularizable if there is an invertible matrix T over F such that the matrices T−1ST, are all upper triangular. It is a well-known and easy fact that any commutative set is triangularizable if F is algebraically closed, or if F contains the spectrum of every member of . Many sufficient conditions are known for triangularizability of matrix collections. Levitzki [7] proved that a (multiplicative) semigroup of nilpotent matrices is triangularizable. (His result is valid even over a division ring.) Kolchin [5] showed the triangularizability of a semigroup of unipotent matrices, i.e., matrices of the form I + N with N nilpotent. Kaplansky [3, 4] unified and generalized these results.


Sign in / Sign up

Export Citation Format

Share Document