polynomial maps
Recently Published Documents


TOTAL DOCUMENTS

215
(FIVE YEARS 32)

H-INDEX

13
(FIVE YEARS 2)

2021 ◽  
Vol 25 (9) ◽  
pp. 179-199
Author(s):  
Araceli Bonifant ◽  
John Milnor ◽  
Scott Sutherland

This note will describe an effective procedure for constructing critically finite real polynomial maps with specified combinatorics.


2021 ◽  
Author(s):  
Stuart D. Scott

Binary groups are a meaningful step up from non-associative rings and nearrings. It makes sense to study them in terms of their nearrings of zero-fixing polynomial maps. As this involves algebras of a more specialized nature these are looked into in sections three and four. One of the main theorems of this paper occurs in section five where it is shown that a binary group V is a P0(V) ring module if, and only if, it is a rather restricted form of non-associative ring. Properties of these non-associative rings (called terminal rings) are investigated in sections six and seven. The finite case is of special interest since here terminal rings of odd order really are quite restricted. Sections eight to thirteen are taken up with the study of terminal rings of order pn (p an odd prime and n ≥ 1 an integer ≤ 7).


2021 ◽  
Vol 31 (09) ◽  
pp. 2150133
Author(s):  
Haihong Guo ◽  
Wei Liang

In this paper, chaotic dynamics of a class of partial difference equations are investigated. With the help of the coupled-expansion theory of general discrete dynamical systems, two chaotification schemes for partial difference equations with polynomial maps are established. These controlled equations are proved to be chaotic either in the sense of Li–Yorke or in the sense of both Li–Yorke and Devaney. One example is provided to illustrate the theoretical results with computer simulations for demonstration.


2021 ◽  
Vol 5 (2) ◽  
pp. 55
Author(s):  
Yang Zhao ◽  
Shicun Zhao ◽  
Yi Zhang ◽  
Da Wang

In this paper, a novel escape-time algorithm is proposed to calculate the connectivity’s degree of Julia sets generated from polynomial maps. The proposed algorithm contains both quantitative analysis and visual display to measure the connectivity of Julia sets. For the quantitative part, a connectivity criterion method is designed by exploring the distribution rule of the connected regions, with an output value Co in the range of [0,1]. The smaller the Co value outputs, the better the connectivity is. For the visual part, we modify the classical escape-time algorithm by highlighting and separating the initial point of each connected area. Finally, the Julia set is drawn into different brightnesses according to different Co values. The darker the color, the better the connectivity of the Julia set. Numerical results are included to assess the efficiency of the algorithm.


Sign in / Sign up

Export Citation Format

Share Document