scholarly journals A comparison theorem for the first Dirichlet eigenvalue of a domain in a Kaehler submanifold

Author(s):  
Francisco J. Carreras ◽  
Fernando Giménez ◽  
Vicente Miquel

AbstractWe give a sharp lower bound for the first eigenvalue of the Dirichlet eigenvalue problem on a domain of a complex submanifold of a Kaehler manifold with curvature bounded from above. The bound on the first eigenvalue is given as a function of the extrinsic outer radius and the bounds on the curvature, and it is attained only on geodesic spheres of a space of constant holomorphic sectional curvature embedded in the Kaehler manifold as a totally geodesic submanifold.

2019 ◽  
Vol 22 (5) ◽  
pp. 1414-1436 ◽  
Author(s):  
Leandro M. Del Pezzo ◽  
Raúl Ferreira ◽  
Julio D. Rossi

Abstract In this paper we study the Dirichlet eigenvalue problem $$\begin{array}{} \displaystyle -\Delta_p u-\Delta_{J,p}u =\lambda|u|^{p-2}u \text{ in } \Omega,\quad u=0 \, \text{ in } \, \Omega^c=\mathbb{R}^N\setminus\Omega. \end{array}$$ Here Ω is a bounded domain in ℝN, Δpu is the standard local p-Laplacian and ΔJ,pu is a nonlocal p-homogeneous operator of order zero. We show that the first eigenvalue (that is isolated and simple) satisfies $\begin{array}{} \displaystyle \lim_{p\to\infty} \end{array}$(λ1)1/p = Λ where Λ can be characterized in terms of the geometry of Ω. We also find that the eigenfunctions converge, u∞ = $\begin{array}{} \displaystyle \lim_{p\to\infty} \end{array}$ up, and find the limit problem that is satisfied in the limit.


Author(s):  
Philip W. Schaefer

SynopsisIt is shown that Ф = | grad u |2–uΔu, where u is a solution of Δ2u+pf(u) = 0 in D, assumes its maximum value on the boundary of D. This principle leads one to a lower bound on the first eigenvalue in the non-linear Dirichlet eigenvalue problem and to the non-existence of solutions to this non-linear partial differential equation subject to certain zero boundaryconditions.


Sign in / Sign up

Export Citation Format

Share Document