A sharp lower bound for the first eigenvalue on Finsler manifolds with nonnegative weighted Ricci curvature

2015 ◽  
Vol 117 ◽  
pp. 189-199 ◽  
Author(s):  
Qiaoling Xia
Mathematics ◽  
2018 ◽  
Vol 6 (12) ◽  
pp. 311
Author(s):  
Songting Yin ◽  
Pan Zhang

Let ( M , F , d μ ) be a Finsler manifold with the Ricci curvature bounded below by a positive number and constant S-curvature. We prove that, if the first eigenvalue of the Finsler–Laplacian attains its lower bound, then M is isometric to a Finsler sphere. Moreover, we establish a comparison result on the Hessian trace of the distance function.


2016 ◽  
Vol 09 (03) ◽  
pp. 505-532
Author(s):  
Jonathan J. Zhu

In this paper we exhibit deformations of the hemisphere [Formula: see text], [Formula: see text], for which the ambient Ricci curvature lower bound [Formula: see text] and the minimality of the boundary are preserved, but the first Laplace eigenvalue of the boundary decreases. The existence of these metrics suggests that any resolution of Yau’s conjecture on the first eigenvalue of minimal hypersurfaces in spheres would likely need to consider more geometric data than a Ricci curvature lower bound.


Author(s):  
Jianfeng Lu ◽  
Stefan Steinerberger

The purpose of this short paper is to give a variation on the classical Donsker–Varadhan inequality, which bounds the first eigenvalue of a second-order elliptic operator on a bounded domain Ω by the largest mean first exit time of the associated drift–diffusion process via λ 1 ≥ 1 sup x ∈ Ω E x τ Ω c . Instead of looking at the mean of the first exit time, we study quantiles: let d p , ∂ Ω : Ω → R ≥ 0 be the smallest time t such that the likelihood of exiting within that time is p , then λ 1 ≥ log ( 1 / p ) sup x ∈ Ω d p , ∂ Ω ( x ) . Moreover, as p → 0 , this lower bound converges to λ 1 .


Sign in / Sign up

Export Citation Format

Share Document