scholarly journals ON VALUES TAKEN BY THE LARGEST PRIME FACTOR OF SHIFTED PRIMES

2018 ◽  
Vol 107 (1) ◽  
pp. 133-144 ◽  
Author(s):  
JIE WU

Denote by$\mathbb{P}$the set of all prime numbers and by$P(n)$the largest prime factor of positive integer$n\geq 1$with the convention$P(1)=1$. In this paper, we prove that, for each$\unicode[STIX]{x1D702}\in (\frac{32}{17},2.1426\cdots \,)$, there is a constant$c(\unicode[STIX]{x1D702})>1$such that, for every fixed nonzero integer$a\in \mathbb{Z}^{\ast }$, the set$$\begin{eqnarray}\{p\in \mathbb{P}:p=P(q-a)\text{ for some prime }q\text{ with }p^{\unicode[STIX]{x1D702}}<q\leq c(\unicode[STIX]{x1D702})p^{\unicode[STIX]{x1D702}}\}\end{eqnarray}$$has relative asymptotic density one in$\mathbb{P}$. This improves a similar result due to Banks and Shparlinski [‘On values taken by the largest prime factor of shifted primes’,J. Aust. Math. Soc.82(2015), 133–147], Theorem 1.1, which requires$\unicode[STIX]{x1D702}\in (\frac{32}{17},2.0606\cdots \,)$in place of$\unicode[STIX]{x1D702}\in (\frac{32}{17},2.1426\cdots \,)$.

2007 ◽  
Vol 82 (1) ◽  
pp. 133-147 ◽  
Author(s):  
William D. Banks ◽  
Igor E. Shparlinski

AbstractLet P denote the set of prime numbers, and let P(n) denote the largest prime factor of an integer n > 1. We show that, for every real number , there exists a constant c(η) > 1 such that for every integer a ≠ 0, the set has relative asymptotic density one in the set of all prime numbers. Moreover, in the range , one can take c(η) = 1+ε for any fixed ε > 0. In particular, our results imply that for every real number 0.486 ≤ b.thetav; ≤ 0.531, the relation P(q − a) ≍ qθ holds for infinitely many primes q. We use this result to derive a lower bound on the number of distinct prime divisor of the value of the Carmichael function taken on a product of shifted primes. Finally, we study iterates of the map q ↦ P(q - a) for a > 0, and show that for infinitely many primes q, this map can be iterated at least (log logq)1+o(1) times before it terminates.


Author(s):  
D. R. Heath-Brown

A positive integer n is called square-full if p2|n for every prime factor p of n. Let Q(x) denote the number of square-full integers up to x. It was shown by Bateman and Grosswald [1] thatBateman and Grosswald also remarked that any improvement in the exponent would imply a ‘quasi-Riemann Hypothesis’ of the type for . Thus (1) is essentially as sharp as one can hope for at present. From (1) it follows that, for the number of square-full integers in a short interval, we havewhen and y = o (x½). (It seems more suggestive) to write the interval as (x, x + x½y]) than (x, x + y], since only intervals of length x½ or more can be of relevance here.)


1968 ◽  
Vol 8 (3) ◽  
pp. 571-574 ◽  
Author(s):  
C. D. Cox ◽  
A. J. Van Der Poorten

Euclid's scheme for proving the infinitude of the primes generates, amongst others, the following sequence defined by p1 = 2 and pn+1 is the highest prime factor of p1p2…pn+1.


1991 ◽  
Vol 33 (3) ◽  
pp. 350-358
Author(s):  
Glyn Harman

Following Masser and Shiu [6] we say that a positive integer n is sparsely totient ifHere φ is the familiar Euler totient function. We write ℱ for the set of sparsely totient numbers. In [6] several results are proved about the multiplicative structure of ℱ. If we write P(n) for the largest prime factor of n then it was shown (Theorem 2 of [6]) thatand infinitely often


2020 ◽  
pp. 1-12
Author(s):  
Paul Pollack

Abstract For each positive integer n, let $U(\mathbf {Z}/n\mathbf {Z})$ denote the group of units modulo n, which has order $\phi (n)$ (Euler’s function) and exponent $\lambda (n)$ (Carmichael’s function). The ratio $\phi (n)/\lambda (n)$ is always an integer, and a prime p divides this ratio precisely when the (unique) Sylow p-subgroup of $U(\mathbf {Z}/n\mathbf {Z})$ is noncyclic. Write W(n) for the number of such primes p. Banks, Luca, and Shparlinski showed that for certain constants $C_1, C_2>0$ , $$ \begin{align*} C_1 \frac{\log\log{n}}{(\log\log\log{n})^2} \le W(n) \le C_2 \log\log{n} \end{align*} $$ for all n from a sequence of asymptotic density 1. We sharpen their result by showing that W(n) has normal order $\log \log {n}/\log \log \log {n}$ .


2009 ◽  
Vol 79 (3) ◽  
pp. 455-463 ◽  
Author(s):  
KEVIN FORD ◽  
FLORIAN LUCA ◽  
IGOR E. SHPARLINSKI

AbstractLetP(k) be the largest prime factor of the positive integerk. In this paper, we prove that the seriesis convergent for each constantα<1/2, which gives a more precise form of a result of C. L. Stewart [‘On divisors of Fermat, Fibonacci, Lucas and Lehmer numbers’,Proc. London Math. Soc.35(3) (1977), 425–447].


1996 ◽  
Vol 119 (2) ◽  
pp. 201-208 ◽  
Author(s):  
M. N. Huxley ◽  
O. Trifonov

A positive integer is square-full if each prime factor occurs to the second power or higher. Each square-full number can be written uniquely as a square times the cube of a square-free number. The perfect squares make up more than three-quarters of the sequence {si} of square-full numbers, so that a pair of consecutive square-full numbers is a pair of consecutive squares at least half the time, with


1961 ◽  
Vol 5 (1) ◽  
pp. 35-40 ◽  
Author(s):  
R. A. Rankin

For any positive integers n and v letwhere d runs through all the positive divisors of n. For each positive integer k and real x > 1, denote by N(v, k; x) the number of positive integers n ≦ x for which σv(n) is not divisible by k. Then Watson [6] has shown that, when v is odd,as x → ∞; it is assumed here and throughout that v and k are fixed and independent of x. It follows, in particular, that σ (n) is almost always divisible by k. A brief account of the ideas used by Watson will be found in § 10.6 of Hardy's book on Ramanujan [2].


1955 ◽  
Vol 7 ◽  
pp. 347-357 ◽  
Author(s):  
D. H. Lehmer

This paper is concerned with the numbers which are relatively prime to a given positive integerwhere the p's are the distinct prime factors of n. Since these numbers recur periodically with period n, it suffices to study the ϕ(n) numbers ≤n and relatively prime to n.


1968 ◽  
Vol 9 (2) ◽  
pp. 146-151 ◽  
Author(s):  
F. J. Rayner

Letkbe any algebraically closed field, and denote byk((t)) the field of formal power series in one indeterminatetoverk. Letso thatKis the field of Puiseux expansions with coefficients ink(each element ofKis a formal power series intl/rfor some positive integerr). It is well-known thatKis algebraically closed if and only ifkis of characteristic zero [1, p. 61]. For examples relating to ramified extensions of fields with valuation [9, §6] it is useful to have a field analogous toKwhich is algebraically closed whenkhas non-zero characteristicp. In this paper, I prove that the setLof all formal power series of the form Σaitei(where (ei) is well-ordered,ei=mi|nprt,n∈ Ζ,mi∈ Ζ,ai∈k,ri∈ Ν) forms an algebraically closed field.


Sign in / Sign up

Export Citation Format

Share Document