scholarly journals The PITA system: Tabling and answer subsumption for reasoning under uncertainty

2011 ◽  
Vol 11 (4-5) ◽  
pp. 433-449 ◽  
Author(s):  
FABRIZIO RIGUZZI ◽  
TERRANCE SWIFT

AbstractMany real world domains require the representation of a measure of uncertainty. The most common such representation is probability, and the combination of probability with logic programs has given rise to the field of Probabilistic Logic Programming (PLP), leading to languages such as the Independent Choice Logic, Logic Programs with Annotated Disjunctions (LPADs), Problog, PRISM, and others. These languages share a similar distribution semantics, and methods have been devised to translate programs between these languages. The complexity of computing the probability of queries to these general PLP programs is very high due to the need to combine the probabilities of explanations that may not be exclusive. As one alternative, the PRISM system reduces the complexity of query answering by restricting the form of programs it can evaluate. As an entirely different alternative, Possibilistic Logic Programs adopt a simpler metric of uncertainty than probability.Each of these approaches—general PLP, restricted PLP, and Possibilistic Logic Programming—can be useful in different domains depending on the form of uncertainty to be represented, on the form of programs needed to model problems, and on the scale of the problems to be solved. In this paper, we show how the PITA system, which originally supported the general PLP language of LPADs, can also efficiently support restricted PLP and Possibilistic Logic Programs. PITA relies on tabling with answer subsumption and consists of a transformation along with an API for library functions that interface with answer subsumption. We show that, by adapting its transformation and library functions, PITA can be parameterized to PITA(IND, EXC) which supports the restricted PLP of PRISM, including optimizations that reduce non-discriminating arguments and the computation of Viterbi paths. Furthermore, we show PITA to be competitive with PRISM for complex queries to Hidden Markov Model examples, and sometimes much faster. We further show how PITA can be parameterized to PITA(COUNT) which computes the number of different explanations for a subgoal, and to PITA(POSS) which scalably implements Possibilistic Logic Programming. PITA is a supported package in version 3.3 of XSB.

2012 ◽  
Vol 13 (2) ◽  
pp. 279-302 ◽  
Author(s):  
FABRIZIO RIGUZZI ◽  
TERRANCE SWIFT

AbstractDistribution semantics is one of the most prominent approaches for the combination of logic programming and probability theory. Many languages follow this semantics, such as Independent Choice Logic, PRISM, pD, Logic Programs with Annotated Disjunctions (LPADs), and ProbLog. When a program contains functions symbols, the distribution semantics is well–defined only if the set of explanations for a query is finite and so is each explanation. Well–definedness is usually either explicitly imposed or is achieved by severely limiting the class of allowed programs. In this paper, we identify a larger class of programs for which the semantics is well–defined together with an efficient procedure for computing the probability of queries. Since Logic Programs with Annotated Disjunctions offer the most general syntax, we present our results for them, but our results are applicable to all languages under the distribution semantics. We present the algorithm “Probabilistic Inference with Tabling and Answer subsumption” (PITA) that computes the probability of queries by transforming a probabilistic program into a normal program and then applying SLG resolution with answer subsumption. PITA has been implemented in XSB and tested on six domains: two with function symbols and four without. The execution times are compared with those of ProbLog, cplint, and CVE. PITA was almost always able to solve larger problems in a shorter time, on domains with and without function symbols.


Author(s):  
FELIX Q. WEITKÄMPER

Abstract Probabilistic logic programming is a major part of statistical relational artificial intelligence, where approaches from logic and probability are brought together to reason about and learn from relational domains in a setting of uncertainty. However, the behaviour of statistical relational representations across variable domain sizes is complex, and scaling inference and learning to large domains remains a significant challenge. In recent years, connections have emerged between domain size dependence, lifted inference and learning from sampled subpopulations. The asymptotic behaviour of statistical relational representations has come under scrutiny, and projectivity was investigated as the strongest form of domain size dependence, in which query marginals are completely independent of the domain size. In this contribution we show that every probabilistic logic program under the distribution semantics is asymptotically equivalent to an acyclic probabilistic logic program consisting only of determinate clauses over probabilistic facts. We conclude that every probabilistic logic program inducing a projective family of distributions is in fact everywhere equivalent to a program from this fragment, and we investigate the consequences for the projective families of distributions expressible by probabilistic logic programs.


2017 ◽  
Vol 17 (02) ◽  
pp. e16
Author(s):  
Sergio Alejandro Gómez

We present an approach for performing instance checking in possibilistic description logic programming ontologies by accruing arguments that support the membership of individuals to concepts. Ontologies are interpreted as possibilistic logic programs where accruals of arguments as regarded as vertexes in an abstract argumentation framework. A suitable attack relation between accruals is defined. We present a reasoning framework with a case study and a Java-based implementation for enacting the proposed approach that is capable of reasoning under Dung’s grounded semantics.


2014 ◽  
Vol 14 (4-5) ◽  
pp. 681-695 ◽  
Author(s):  
ELENA BELLODI ◽  
EVELINA LAMMA ◽  
FABRIZIO RIGUZZI ◽  
VITOR SANTOS COSTA ◽  
RICCARDO ZESE

AbstractLifted inference has been proposed for various probabilistic logical frameworks in order to compute the probability of queries in a time that depends on the size of the domains of the random variables rather than the number of instances. Even if various authors have underlined its importance for probabilistic logic programming (PLP), lifted inference has been applied up to now only to relational languages outside of logic programming. In this paper we adapt Generalized Counting First Order Variable Elimination (GC-FOVE) to the problem of computing the probability of queries to probabilistic logic programs under the distribution semantics. In particular, we extend the Prolog Factor Language (PFL) to include two new types of factors that are needed for representing ProbLog programs. These factors take into account the existing causal independence relationships among random variables and are managed by the extension to variable elimination proposed by Zhang and Poole for dealing with convergent variables and heterogeneous factors. Two new operators are added to GC-FOVE for treating heterogeneous factors. The resulting algorithm, called LP2for Lifted Probabilistic Logic Programming, has been implemented by modifying the PFL implementation of GC-FOVE and tested on three benchmarks for lifted inference. A comparison with PITA and ProbLog2 shows the potential of the approach.


2009 ◽  
Vol 9 (3) ◽  
pp. 245-308 ◽  
Author(s):  
JOOST VENNEKENS ◽  
MARC DENECKER ◽  
MAURICE BRUYNOOGHE

AbstractThis paper develops a logical language for representing probabilistic causal laws. Our interest in such a language is two-fold. First, it can be motivated as a fundamental study of the representation of causal knowledge. Causality has an inherent dynamic aspect, which has been studied at the semantical level by Shafer in his framework of probability trees. In such a dynamic context, where the evolution of a domain over time is considered, the idea of a causal law as something which guides this evolution is quite natural. In our formalization, a set of probabilistic causal laws can be used to represent a class of probability trees in a concise, flexible and modular way. In this way, our work extends Shafer's by offering a convenient logical representation for his semantical objects. Second, this language also has relevance for the area of probabilistic logic programming. In particular, we prove that the formal semantics of a theory in our language can be equivalently defined as a probability distribution over the well-founded models of certain logic programs, rendering it formally quite similar to existing languages such as ICL or PRISM. Because we can motivate and explain our language in a completely self-contained way as a representation of probabilistic causal laws, this provides a new way of explaining the intuitions behind such probabilistic logic programs: we can say precisely which knowledge such a program expresses, in terms that are equally understandable by a non-logician. Moreover, we also obtain an additional piece of knowledge representation methodology for probabilistic logic programs, by showing how they can express probabilistic causal laws.


2011 ◽  
Vol 13 (1) ◽  
pp. 33-70 ◽  
Author(s):  
JUAN CARLOS NIEVES ◽  
MAURICIO OSORIO ◽  
ULISES CORTÉS

AbstractIn this paper, a possibilistic disjunctive logic programming approach for modeling uncertain, incomplete, and inconsistent information is defined. This approach introduces the use of possibilistic disjunctive clauses, which are able to capture incomplete information and states of a knowledge base at the same time. By considering a possibilistic logic program as a possibilistic logic theory, a construction of a possibilistic logic programming semantic based on answer sets and the proof theory of possibilistic logic is defined. It shows that this possibilistic semantics for disjunctive logic programs can be characterized by a fixed-point operator. It is also shown that the suggested possibilistic semantics can be computed by a resolution algorithm and the consideration of optimal refutations from a possibilistic logic theory. In order to manage inconsistent possibilistic logic programs, a preference criterion between inconsistent possibilistic models is defined. In addition, the approach of cuts for restoring consistency of an inconsistent possibilistic knowledge base is adopted. The approach is illustrated in a medical scenario.


2021 ◽  
Author(s):  
Arnaud Nguembang Fadja ◽  
Fabrizio Riguzzi ◽  
Evelina Lamma

AbstractProbabilistic logic programming (PLP) combines logic programs and probabilities. Due to its expressiveness and simplicity, it has been considered as a powerful tool for learning and reasoning in relational domains characterized by uncertainty. Still, learning the parameter and the structure of general PLP is computationally expensive due to the inference cost. We have recently proposed a restriction of the general PLP language called hierarchical PLP (HPLP) in which clauses and predicates are hierarchically organized. HPLPs can be converted into arithmetic circuits or deep neural networks and inference is much cheaper than for general PLP. In this paper we present algorithms for learning both the parameters and the structure of HPLPs from data. We first present an algorithm, called parameter learning for hierarchical probabilistic logic programs (PHIL) which performs parameter estimation of HPLPs using gradient descent and expectation maximization. We also propose structure learning of hierarchical probabilistic logic programming (SLEAHP), that learns both the structure and the parameters of HPLPs from data. Experiments were performed comparing PHIL and SLEAHP with PLP and Markov Logic Networks state-of-the art systems for parameter and structure learning respectively. PHIL was compared with EMBLEM, ProbLog2 and Tuffy and SLEAHP with SLIPCOVER, PROBFOIL+, MLB-BC, MLN-BT and RDN-B. The experiments on five well known datasets show that our algorithms achieve similar and often better accuracies but in a shorter time.


Sign in / Sign up

Export Citation Format

Share Document