scholarly journals Tracing Metallicity in High Redshift Quasars

2009 ◽  
Vol 5 (S265) ◽  
pp. 183-184
Author(s):  
Leah E. Simon ◽  
Fred Hamann

AbstractWe present two ongoing studies of gas phase abundances around high redshift quasars. First, we examine broad emission line (BEL) metallicities for 29 quasars with 2.3 < z < 4.6 and far-infrared (far-IR) luminosities (LFIR) from 1013.4 to ≤ 1012.2 L⊙, corresponding to star formation rates (SFRs) of 6740 to ≤ 1360 M⊙ yr−1. Quasar samples sorted by LFIR might represent an evolutionary sequence if SFRs in quasar hosts generally diminish across quasar lifetimes. We create three composite spectra from rest-frame ultra-violet Sloan Digital Sky Survey spectra with increasing far-IR luminosity. We measure the N V(λ1240)/C IV(λ1550) and Si IV(λ1397)+O IV](λ1402)/C IV(λ1550) emission line flux ratios for each composite and find uniformly high (~5-10 times solar) metallicities for the three composites, and no evidence for changes in metal enrichment with changes in ongoing SFR. Second, we present preliminary results from the largest ever survey of high resolution associated absorption line (AAL) region metallicities and physical properties in a sample of high redshift (z > 3) quasars. This includes five quasars with previously known AALs at z > 4 and two well measured z ~3 quasars with unusually rich absorption spectra. We determine well-constrained metallicities of about twice solar for five AAL systems. We find a range of lower limits for AAL metallicities in the z > 4 quasars from 1/100ths solar to 3 times solar. Overall, these results for typically super-solar gas-phase metallicities near quasars are consistent with evolutionary schemes where the major episodes of star formation in the host galaxies occur before the visibly luminous quasar phase. High SFRs (comparable to ULIRGs) in the host galaxies are not clearly linked to younger or chemically less mature quasar environments.

2019 ◽  
Vol 622 ◽  
pp. A18
Author(s):  
H. R. Stacey ◽  
J. P. McKean ◽  
N. J. Jackson ◽  
P. N. Best ◽  
G. Calistro Rivera ◽  
...  

Determining the star-forming properties of radio-quiet quasars is important for understanding the co-evolution of star formation and black hole accretion. We present the detection of the gravitationally lensed radio-quiet quasars SDSS J1055+4628, SDSS J1313+5151, and SBS 1520+530 at 144 MHz, which fall in the HETDEX Spring Field targeted in the LOFAR Two-metre Sky Survey (LoTSS) first full data release. We compare their radio and far-infrared luminosities relative to the radio–infrared correlation and find that their radio luminosities can be explained by star formation. The implied star formation rates derived from their radio and infrared luminosities are between 20 and 300 M ⊙ yr−1. These detections represent the first study of gravitationally lensed sources with LOFAR, opening a new frequency window for investigating the star-forming properties of high-redshift quasars at radio wavelengths. We consider the implications for future data releases and estimate that many of the objects in our parent sample will be detected during LoTSS, significantly increasing the fraction of gravitationally lensed radio-quiet quasars with radio detections.


2019 ◽  
Vol 631 ◽  
pp. A132 ◽  
Author(s):  
S. J. Molyneux ◽  
C. M. Harrison ◽  
M. E. Jarvis

Using a sample of 2922 z <  0.2, spectroscopically identified active galactic nuclei (AGN), we explore the relationship between radio size and the prevalence of extreme ionised outflows, as traced using broad [O III] emission-line profiles in spectra obtained by the Sloan Digital Sky Survey (SDSS). To classify radio sources as compact or extended, we combined a machine-learning technique for morphological classification with size measurements from two-dimensional Gaussian models to data from all-sky radio surveys. We find that the two populations have statistically different [O III] emission-line profiles; the compact sources tend to have the most extreme gas kinematics. When the radio emission is confined within 3″ (i.e. within the spectroscopic fibre or ≲5 kpc at the median redshift), the chance of observing broad [O III] emission-line components, which are indicative of very high velocity outflows and have a full width at half-maximum > 1000 km s−1, is twice as high. This difference is greatest for the highest radio luminosity bin of log[L1.4 GHz/W Hz−1] = 23.5−24.5 where the AGN dominate the radio emission; specifically, > 1000 km s−1 components are almost four times as likely to occur when the radio emission is compact in this subsample. Our follow-up ≈0.3″–1″ resolution radio observations for a subset of targets in this luminosity range reveal that radio jets and lobes are prevalent, and suggest that compact jets might be responsible for the stronger outflows in the wider sample. Our results are limited by the available relatively shallow all-sky radio surveys, but forthcoming surveys will provide a more complete picture of the connection between radio emission and outflows. Overall, our results add to the growing body of evidence that ionised outflows and compact radio emission in highly accreting “radiative” AGN are closely connected, possibly as a result of young or weak radio jets.


2018 ◽  
Vol 615 ◽  
pp. A7 ◽  
Author(s):  
S. K. Leslie ◽  
M. T. Sargent ◽  
E. Schinnerer ◽  
B. Groves ◽  
A. van der Wel ◽  
...  

Disk galaxies at intermediate redshift (z ~ 0.7) have been found in previous work to display more optically thick behaviour than their local counterparts in the rest-frame B-band surface brightness, suggesting an evolution in dust properties over the past ~6 Gyr. We compare the measured luminosities of face-on and edge-on star-forming galaxies at different wavelengths (Ultraviolet (UV), mid-infrared (MIR), far-infrared (FIR), and radio) for two well-matched samples of disk-dominated galaxies: a local Sloan Digital Sky Survey (SDSS)-selected sample at z ~ 0.07 and a sample of disks at z ~ 0.7 drawn from Cosmic Evolution Survey (COSMOS). We have derived correction factors to account for the inclination dependence of the parameters used for sample selection. We find that typical galaxies are transparent at MIR wavelengths at both redshifts, and that the FIR and radio emission is also transparent as expected. However, reduced sensitivity at these wavelengths limits our analysis; we cannot rule out opacity in the FIR or radio. Ultra-violet attenuation has increased between z ~ 0 and z ~ 0.7, with the z ~ 0.7 sample being a factor of ~3.4 more attenuated. The larger UV attenuation at z ~ 0.7 can be explained by more clumpy dust around nascent star-forming regions. There is good agreement between the fitted evolution of the normalisation of the SFRUV versus 1 − cos(i) trend (interpreted as the clumpiness fraction) and the molecular gas fraction/dust fraction evolution of galaxies found out to z < 1.


2020 ◽  
Vol 494 (3) ◽  
pp. 3469-3480 ◽  
Author(s):  
Sebastián Bustamante ◽  
Sara L Ellison ◽  
David R Patton ◽  
Martin Sparre

ABSTRACT In recent observational studies, star-forming galaxies have been shown to follow a relation often dubbed the fundamental metallicity relation (FMR). This relation links the stellar mass of a galaxy with its star formation rate (SFR) and its gas-phase metallicity. Specifically, the FMR predicts that galaxies, at a given stellar mass, exhibit lower metallicities for higher SFRs. This trend is qualitatively consistent with observations of galaxy pairs, which have been robustly shown to experience increasing gas-phase metallicity dilution and enhanced star formation activity with decreasing projected separation. In this work, we show that, despite the qualitative consistency with FMR expectations, the observed O/H dilution in galaxy pairs of the Sloan Digital Sky Survey is stronger than what is predicted by the FMR. We conclude that the evolutionary phase of galaxies interacting with companions is not encoded in the FMR, and thus, mergers constitute a clearly defined population of outliers. We find that galaxies in pairs are consistent with the FMR only when their separation is larger than 110 kpc. Finally, we also quantify the local environment of the pairs using the number of galaxy neighbours within 2 Mpc, N2, and the projected separation to the second closest galaxy, r2. We find that pairs are more sensitive to a second companion than to the local galaxy density, displaying less elevated SFRs with smaller values of r2.


2019 ◽  
Vol 489 (1) ◽  
pp. L108-L113 ◽  
Author(s):  
Timothy A Davis ◽  
Lisa M Young

ABSTRACT In this letter we construct a large sample of early-type galaxies (ETGs) with measured gas-phase metallicities from the Sloan Digital Sky Survey and Galaxy Zoo in order to investigate the origin of the gas that fuels their residual star formation. We use this sample to show that star-forming elliptical galaxies have a substantially different gas-phase metallicity distribution from spiral galaxies, with ≈7.4 per cent having a very low gas-phase metallicity for their mass. These systems typically have fewer metals in the gas phase than they do in their stellar photospheres, which strongly suggests that the material fuelling their recent star formation was accreted from an external source. We use a chemical evolution model to show that the enrichment time-scale for low-metallicity gas is very short, and thus that cosmological accretion and minor mergers are likely to supply the gas in ≳ 37 per cent of star-forming ETGs, in good agreement with estimates derived from other independent techniques.


2013 ◽  
Vol 9 (S304) ◽  
pp. 221-224
Author(s):  
Laura Trouille ◽  
Amy Barger ◽  
Christy Tremonti

AbstractThe Baldwin, Phillips, and Terlevich emission-line ratio diagnostic ([OIII]/Hβ versus [NII]/Hα, hereafter BPT diagram) efficiently separates galaxies whose signal is dominated by star formation (BPT-SF) from those dominated by AGN activity (BPT-AGN). Yet the BPT diagram is limited to z<0.5, the redshift at which [NII]λ6584 leaves the optical spectral window. Using the Sloan Digital Sky Survey (SDSS), we construct a new diagnostic, or TBT diagram, that is based on rest-frame g−z color, [NeIII]λ3869, and [OII]λλ3726+3729 and can be used for galaxies out to z<1.4. The TBT diagram identifies 98.7% of the SDSS BPT-AGN as TBT-AGN and 97% of the SDSS BPT-SF as TBT-SF. Furthermore, it identifies 97% of the OPTX Chandra X-ray selected AGNs as TBT-AGN. This is in contrast to the BPT diagram, which misidentifies 20% of X-ray selected AGNs as BPT-SF.


2019 ◽  
Vol 15 (S359) ◽  
pp. 441-443
Author(s):  
F. S. Lohmann ◽  
A. Schnorr-Müller ◽  
M. Trevisan ◽  
R. Riffel ◽  
N. Mallmann ◽  
...  

AbstractObservations at high redshift reveal that a population of massive, quiescent galaxies (called red nuggets) already existed 10 Gyr ago. These objects undergo a significant size evolution over time, likely due to minor mergers. In this work we present an analysis of local massive compact galaxies to assess if their properties are consistent with what is expected for unevolved red nuggets (relic galaxies). Using integral field spectroscopy (IFS) data from the MaNGA survey from the Sloan Digital Sky Survey (SDSS), we characterized the kinematics and properties of stellar populations of massive compact galaxies, and find that these objects exhibit, on average, a higher rotational support than a control sample of average sized early-type galaxies. This is in agreement with a scenario in which these objects have a quiet accretion history, rendering them candidates for relic galaxies.


Sign in / Sign up

Export Citation Format

Share Document