radio jets
Recently Published Documents


TOTAL DOCUMENTS

381
(FIVE YEARS 58)

H-INDEX

39
(FIVE YEARS 6)

Author(s):  
Pallavi Patil ◽  
Mark Whittle ◽  
Kristina Nyland ◽  
Carol Lonsdale ◽  
Mark Lacy ◽  
...  
Keyword(s):  

Author(s):  
Raffaella Morganti ◽  
Tom Oosterloo ◽  
Suma Murthy ◽  
Clive Tadhunter
Keyword(s):  

Author(s):  
Ankush Mandal ◽  
Dipanjan Mukherjee ◽  
Christoph Federrath ◽  
Nicole P H Nesvadba ◽  
Geoffrey V Bicknell ◽  
...  

Abstract We apply a turbulence-regulated model of star formation to calculate the star formation rate (SFR) of dense star-forming clouds in simulations of jet-ISM interactions. The method isolates individual clumps and accounts for the impact of virial parameter and Mach number of the clumps on the star formation activity. This improves upon other estimates of the SFR in simulations of jet–ISM interactions, which are often solely based on local gas density, neglecting the impact of turbulence. We apply this framework to the results of a suite of jet-ISM interaction simulations to study how the jet regulates the SFR both globally and on the scale of individual star-forming clouds. We find that the jet strongly affects the multi-phase ISM in the galaxy, inducing turbulence and increasing the velocity dispersion within the clouds. This causes a global reduction in the SFR compared to a simulation without a jet. The shocks driven into clouds by the jet also compress the gas to higher densities, resulting in local enhancements of the SFR. However, the velocity dispersion in such clouds is also comparably high, which results in a lower SFR than would be observed in galaxies with similar gas mass surface densities and without powerful radio jets. We thus show that both local negative and positive jet feedback can occur in a single system during a single jet event, and that the star-formation rate in the ISM varies in a complicated manner that depends on the strength of the jet-ISM coupling and the jet break-out time-scale.


2021 ◽  
Author(s):  
Michael Janssen ◽  
Heino Falcke ◽  
Matthias Kadler ◽  
Eduardo Ros ◽  
Maciek Wielgus ◽  
...  

AbstractVery-long-baseline interferometry (VLBI) observations of active galactic nuclei at millimetre wavelengths have the power to reveal the launching and initial collimation region of extragalactic radio jets, down to 10–100 gravitational radii (rg ≡ GM/c2) scales in nearby sources1. Centaurus A is the closest radio-loud source to Earth2. It bridges the gap in mass and accretion rate between the supermassive black holes (SMBHs) in Messier 87 and our Galactic Centre. A large southern declination of −43° has, however, prevented VLBI imaging of Centaurus A below a wavelength of 1 cm thus far. Here we show the millimetre VLBI image of the source, which we obtained with the Event Horizon Telescope at 228 GHz. Compared with previous observations3, we image the jet of Centaurus A at a tenfold higher frequency and sixteen times sharper resolution and thereby probe sub-lightday structures. We reveal a highly collimated, asymmetrically edge-brightened jet as well as the fainter counterjet. We find that the source structure of Centaurus A resembles the jet in Messier 87 on ~500 rg scales remarkably well. Furthermore, we identify the location of Centaurus A’s SMBH with respect to its resolved jet core at a wavelength of 1.3 mm and conclude that the source’s event horizon shadow4 should be visible at terahertz frequencies. This location further supports the universal scale invariance of black holes over a wide range of masses5,6.


Author(s):  
Ting-Wen Lan ◽  
J Xavier Prochaska

Abstract We test the hypothesis that environments play a key role in enabling the growth of enormous radio structures spanning more than 700 kpc, an extreme population of radio galaxies called giant radio galaxies (GRGs). To achieve this, we explore (1) the relationships between the occurrence of GRGs and the surface number density of surrounding galaxies, including satellite galaxies and galaxies from neighboring halos, as well as (2) the GRG locations towards large-scale structures. The analysis is done by making use of a homogeneous sample of 110 GRGs detected from the LOFAR Two-metre Sky Survey in combination with photometric galaxies from the DESI Legacy Imaging Surveys and a large-scale filament catalog from the Sloan Digital Sky Survey. Our results show that the properties of galaxies around GRGs are similar with that around the two control samples, consisting of galaxies with optical colors and luminosity matched to the properties of the GRG host galaxies. Additionally, the properties of surrounding galaxies depend on neither their relative positions to the radio jet/lobe structures nor the sizes of GRGs. We also find that the locations of GRGs and the control samples with respect to the nearby large-scale structures are consistent with each other. These results demonstrate that there is no correlation between the GRG properties and their environments traced by stars, indicating that external galaxy environments are not the primary cause of the large sizes of the radio structures. Finally, regarding radio feedback, we show that the fraction of blue satellites does not correlate with the GRG properties, suggesting that the current epoch of radio jets have minimal influence on the nature of their surrounding galaxies.


2020 ◽  
Vol 645 ◽  
pp. A29
Author(s):  
Ü. Kavak ◽  
Á. Sánchez-Monge ◽  
A. López-Sepulcre ◽  
R. Cesaroni ◽  
F. F. S. van der Tak ◽  
...  

Context. Recent theoretical and observational studies debate the similarities of the formation process of high- (>8 M⊙) and low-mass stars. The formation of low-mass stars is directly associated with the presence of disks and jets. Theoretical models predict that stars with masses up to 140 M⊙ can be formed through disk-mediated accretion in disk-jet systems. According to this scenario, radio jets are expected to be common in high-mass star-forming regions. Aims. We aim to increase the number of known radio jets in high-mass star-forming regions by searching for radio-jet candidates at radio continuum wavelengths. Methods. We used the Karl G. Jansky Very Large Array (VLA) to observe 18 high-mass star-forming regions in the C band (6 cm, ≈1′′.0 resolution) and K band (1.3 cm, ≈0′′.3 resolution). We searched for radio-jet candidates by studying the association of radio continuum sources with shock activity signs (e.g., molecular outflows, extended green objects, and maser emission). Our VLA observations also targeted the 22 GHz H2O and 6.7 GHz CH3OH maser lines. Results. We have identified 146 radio continuum sources, 40 of which are located within the field of view of both images (C and K band maps). We derived the spectral index, which is consistent with thermal emission (between − 0.1 and + 2.0) for 73% of these sources. Based on the association with shock-activity signs, we identified 28 radio-jet candidates. Out of these, we identified 7 as the most probable radio jets. The radio luminosity of the radio-jet candidates is correlated with the bolometric luminosity and the outflow momentum rate. About 7–36% of the radio-jet candidates are associated with nonthermal emission. The radio-jet candidates associated with 6.7 GHz CH3OH maser emission are preferentially thermal winds and jets, while a considerable fraction of radio-jet candidates associated with H2O masers show nonthermal emission that is likely due to strong shocks. Conclusions. About 60% of the radio continuum sources detected within the field of view of our VLA images are potential radio jets. The remaining sources could be compact H II regions in their early stages of development, or radio jets for which we currently lack further evidence of shock activity. Our sample of 18 regions is divided into 8 less evolved infrared-dark regions and 10 more evolved infrared-bright regions. We found that ≈71% of the identified radio-jet candidates are located in the more evolved regions. Similarly, 25% of the less evolved regions harbor one of the most probable radio jets, while up to 50% of the more evolved regions contain one of these radio-jet candidates. This suggests that the detection of radio jets in high-mass star-forming regions is more likely in slightly more evolved regions.


2020 ◽  
Vol 644 ◽  
pp. A54
Author(s):  
F. Santoro ◽  
C. Tadhunter ◽  
D. Baron ◽  
R. Morganti ◽  
J. Holt

Active galactic nuclei (AGN) feedback operated by the expansion of radio jets can play a crucial role in driving gaseous outflows on galaxy scales. Galaxies hosting young radio AGN, whose jets are in the first phases of expansion through the surrounding interstellar medium (ISM), are the ideal targets to probe the energetic significance of this mechanism. In this paper, we characterise the warm ionised gas outflows in a sample of nine young radio sources from the 2 Jy sample, combining X-shooter spectroscopy and Hubble Space Telescope imaging data. We find that the warm outflows have similar radial extents (∼0.06−2 kpc) as radio sources, consistent with the idea that “jet mode” AGN feedback is the dominant driver of the outflows detected in young radio galaxies. Exploiting the broad spectral coverage of the X-shooter data, we used the ratios of trans-auroral emission lines of [S II] and [O II] to estimate the electron densities, finding that most of the outflows have gas densities (log(ne cm−3) ∼ 3 − 4.8), which we speculate could be the result of compression by jet-induced shocks. Combining our estimates of the emission-line luminosities, radii, and densities, we find that the kinetic powers of the warm outflows are a relatively small fraction of the energies available from the accretion of material onto the central supermassive black hole, reflecting AGN feedback efficiencies below 1% in most cases. Overall, the warm outflows detected in our sample are strikingly similar to those found in nearby ultraluminous infrared galaxies, but more energetic and with higher feedback efficiencies on average than the general population of nearby AGN of similar bolometric luminosity; this is likely to reflect a high degree of coupling between the jets and the near-nuclear ISM in the early stages of radio source evolution.


2020 ◽  
Vol 904 (1) ◽  
pp. 57
Author(s):  
D. A. Schwartz ◽  
A. Siemiginowska ◽  
B. Snios ◽  
D. M. Worrall ◽  
M. Birkinshaw ◽  
...  
Keyword(s):  
X Ray ◽  

Sign in / Sign up

Export Citation Format

Share Document