integral field spectroscopy
Recently Published Documents


TOTAL DOCUMENTS

475
(FIVE YEARS 84)

H-INDEX

43
(FIVE YEARS 6)

Author(s):  
Gitika Shukla ◽  
Raghunathan Srianand ◽  
Neeraj Gupta ◽  
Patrick Petitjean ◽  
Andrew J Baker ◽  
...  

Abstract We use Southern African Large Telescope (SALT) to perform long-slit spectroscopic observations of 23 newly discovered radio-loud quasars (RLQs) at 2.7 < z < 3.3. The sample consists of powerful AGN brighter than 200 mJy at 1.4 GHz and is selected on the basis of mid-infrared colors i.e., unbiased to the presence of dust. We report 7 confirmed and 5 tentative detections of diffuse Lyα emission in the sample. We present the properties of diffuse Lyα emission and discuss in detail its relationship to different quasar properties. We find strong dependence of Lyα halo detection rate on the extent of radio source, spectral luminosity of RLQ at 420 MHz (L420MHz), presence of associated C IV absorption and nuclear He II emission line equivalent width. As seen in previous surveys, the FWHM of diffuse Lyα emission in the case of confirmed detections are much higher (i.e.>1000 km/s in all, except one). Using the samples of high-z radio-loud quasars and galaxies from literature, we confirm the correlation between the Lyα halo luminosity and its size with L420MHz. The same quantities are found to be correlating weakly with the projected linear size of the radio emission. Our sample is the second largest sample of RLQs being studied for the presence of diffuse Lyα emission and fills in a redshift gap between previous such studies. Integral Field Spectroscopy is required to fully understand the relationship between the large scale radio emission and the overall distribution, kinematics and over density of Lyα emission in the field of these RLQs.


2021 ◽  
Vol 923 (2) ◽  
pp. 252
Author(s):  
Kelly N. Sanderson ◽  
Moire M. K. Prescott ◽  
Lise Christensen ◽  
Johan Fynbo ◽  
Palle Møller

Abstract Recent wide-field integral-field spectroscopy has revealed the detailed properties of high-redshift Lyα nebulae, most often targeted due to the presence of an active galactic nucleus (AGN). Here, we use VLT/MUSE to resolve the morphology and kinematics of a nebula initially identified due to strong Lyα emission at z ∼ 3.2 (LABn06). Our observations reveal a two-lobed Lyα nebula, at least ∼173 pkpc in diameter, with a light-weighted centroid near a mid-infrared source (within ≈17.2 pkpc) that appears to host an obscured AGN. The Lyα emission near the AGN is also coincident in velocity with the kinematic center of the nebula, suggesting that the nebula is both morphologically and kinematically centered on the AGN. Compared to AGN-selected Lyα nebulae, the surface-brightness profile of this nebula follows a typical exponential profile at large radii (>25 pkpc), although at small radii, the profile shows an unusual dip at the location of the AGN. The kinematics and asymmetry are similar to, and the C iv and He ii upper limits are consistent with, other AGN-powered Lyα nebulae. Double-peaked and asymmetric line profiles suggest that Lyα resonant scattering may be important in this nebula. These results support the picture of the AGN being responsible for powering a Lyα nebula that is oriented roughly in the plane of the sky. Further observations will explore whether the central surface-brightness depression is indicative of either an unusual gas or dust distribution or variation in the ionizing output of the AGN over time.


2021 ◽  
Vol 923 (2) ◽  
pp. 160
Author(s):  
Anne M. Medling ◽  
Lisa J. Kewley ◽  
Daniela Calzetti ◽  
George C. Privon ◽  
Kirsten Larson ◽  
...  

Abstract We study the ionization and excitation structure of the interstellar medium in the late-stage gas-rich galaxy merger NGC 6240 using a suite of emission-line maps at ∼25 pc resolution from the Hubble Space Telescope, Keck/NIRC2 with Adaptive Optics, and the Atacama Large Millimeter/submillimeter Array (ALMA). NGC 6240 hosts a superwind driven by intense star formation and/or one or both of two active nuclei; the outflows produce bubbles and filaments seen in shock tracers from warm molecular gas (H2 2.12 μm) to optical ionized gas ([O iii], [N ii], [S ii], and [O i]) and hot plasma (Fe XXV). In the most distinct bubble, we see a clear shock front traced by high [O iii]/Hβ and [O iii]/[O i]. Cool molecular gas (CO(2−1)) is only present near the base of the bubble, toward the nuclei launching the outflow. We interpret the lack of molecular gas outside the bubble to mean that the shock front is not responsible for dissociating molecular gas, and conclude that the molecular clouds are partly shielded and either entrained briefly in the outflow, or left undisturbed while the hot wind flows around them. Elsewhere in the galaxy, shock-excited H2 extends at least ∼4 kpc from the nuclei, tracing molecular gas even warmer than that between the nuclei, where the two galaxies’ interstellar media are colliding. A ridgeline of high [O iii]/Hβ emission along the eastern arm aligns with the southern nucleus’ stellar disk minor axis; optical integral field spectroscopy from WiFeS suggests this highly ionized gas is centered at systemic velocity and likely photoionized by direct line of sight to the southern active galactic nucleus.


2021 ◽  
Vol 922 (2) ◽  
pp. 116
Author(s):  
Brian DiGiorgio ◽  
Kevin Bundy ◽  
Kyle B. Westfall ◽  
Alexie Leauthaud ◽  
David Stark

Abstract Kinematic weak lensing describes the distortion of a galaxy’s projected velocity field due to lensing shear, an effect recently reported for the first time by Gurri et al. based on a sample of 18 galaxies at z ∼ 0.1. In this paper, we develop a new formalism that combines the shape information from imaging surveys with the kinematic information from resolved spectroscopy to better constrain the lensing distortion of source galaxies and to potentially address systematic errors that affect conventional weak-lensing analyses. Using a Bayesian forward model applied to mock galaxy observations, we model distortions in the source galaxy’s velocity field simultaneously with the apparent shear-induced offset between the kinematic and photometric major axes. We show that this combination dramatically reduces the statistical uncertainty on the inferred shear, yielding statistical error gains of a factor of 2–6 compared to kinematics alone. While we have not accounted for errors from intrinsic kinematic irregularities, our approach opens kinematic lensing studies to higher redshifts where resolved spectroscopy is more challenging. For example, we show that ground-based integral-field spectroscopy of background galaxies at z ∼ 0.7 can deliver gravitational shear measurements with signal-to-noise ratio of ∼1 per source galaxy at 1 arcminute separations from a galaxy cluster at z ∼ 0.3. This suggests that even modest samples observed with existing instruments could deliver improved galaxy cluster mass measurements and well-sampled probes of their halo mass profiles to large radii.


2021 ◽  
Vol 141 (11) ◽  
pp. 695-699
Author(s):  
Yoshihiko Matsui ◽  
Akihiro Suwa ◽  
Kazuya Kato ◽  
Makoto Niwakawa

Author(s):  
Benjamin Metha ◽  
Michele Trenti ◽  
Tingjin Chu

Abstract Thanks to recent advances in integral field spectroscopy (IFS), modern surveys of nearby galaxies are capable of resolving metallicity maps of H ii regions down to scales of ∼50pc. However, statistical analysis of these metallicity maps has seldom gone beyond fitting basic linear regressions and comparing parameters to global galaxy properties. In this paper (the first of a series), we introduce techniques from spatial statistics that are well suited for detailed analysis of both small- and large-scale metallicity variations within the interstellar media (ISMs) of local galaxies. As a first application, we compare the observed structure of small-scale metallicity fluctuations within 7 local galaxies observed by the PHANGS collaboration to predictions from a stochastic, physically motivated, analytical model developed by Krumholz & Ting. We show that while the theoretical model underestimates the amount of correlated scatter in the galactic metallicity distributions by 3 − 4 orders of magnitude, it provides good estimates of the physical scale of metallicity correlations. We conclude that the ISM of local spiral galaxies is far from homogeneous, with regions of size ∼1 kpc showing significant departures from the mean metallicity at each galactocentric radius.


Sign in / Sign up

Export Citation Format

Share Document