Solvent-Minimized Synthesis of 4CzIPN and Related Organic Fluorophores via Ball Milling

Author(s):  
Jamie A. Leitch ◽  
Harry R. Smallman ◽  
Duncan L. Browne
1990 ◽  
Vol 51 (C4) ◽  
pp. C4-169-C4-174 ◽  
Author(s):  
M. OEHRING ◽  
R. BORMANN

2020 ◽  
Author(s):  
Adam Sapnik ◽  
Duncan Johnstone ◽  
Sean M. Collins ◽  
Giorgio Divitini ◽  
Alice Bumstead ◽  
...  

<p>Defect engineering is a powerful tool that can be used to tailor the properties of metal–organic frameworks (MOFs). Here, we incorporate defects through ball milling to systematically vary the porosity of the giant pore MOF, MIL-100 (Fe). We show that milling leads to the breaking of metal–linker bonds, generating more coordinatively unsaturated metal sites, and ultimately causes amorphisation. Pair distribution function analysis shows the hierarchical local structure is partially</p><p>retained, even in the amorphised material. We find that the solvent toluene stabilises the MIL-100 (Fe) framework against collapse and leads to a substantial rentention of porosity over the non-stabilised material.</p>


Sign in / Sign up

Export Citation Format

Share Document