solvent free
Recently Published Documents


TOTAL DOCUMENTS

12955
(FIVE YEARS 2027)

H-INDEX

125
(FIVE YEARS 21)

2022 ◽  
Vol 45 ◽  
pp. 102487
Author(s):  
Cheong Sheng Lee ◽  
Siew Hoong Shuit ◽  
Chuan Chuan Lim ◽  
Qi Hwa Ng ◽  
Peng Yong Hoo ◽  
...  

2022 ◽  
Vol 15 (1) ◽  
pp. 99
Author(s):  
Ahmed M. Mustafa ◽  
Eugenia Mazzara ◽  
Doaa Abouelenein ◽  
Simone Angeloni ◽  
Sonia Nunez ◽  
...  

Black mulberry, Morus nigra L. (family: Moraceae), is a healthy food and medicinal plant. Microwave hydrodiffusion and gravity (MHG) is one of the most innovative applications of solvent-free microwave extraction. The aim of this study was to optimize for the first time the MHG solvent-free extraction of polyphenols and sugars from M. nigra fruits. Optimization was carried out using a central composite design (CCD) with selected responses such as extraction yield, total polyphenol (TPC), flavonoid (TFC), anthocyanin (TAC), and sugar (TSC) contents, in addition to DPPH radical scavenging, and α-glucosidase (AGHi), lipase (Li), and xanthine oxidase (XOi) inhibition as tools to evaluate the best parameters for efficient and rapid extraction of black mulberry. The optimized extract was characterized in terms of the aforementioned parameters to validate the models, and was further analyzed for 36 individual polyphenols using HPLC-MS/MS. The optimized MHG extract was finally compared with traditional extracts, and demonstrated much better performance in terms of TPC, TAC, and Li, while the traditional extracts showed better XOi and AGHi. In conclusion, MHG is a valuable green technique for the production of non-degraded black mulberry polyphenol-rich extract and we suggest its larger use in the pharmaceutical and food industries.


2022 ◽  
Vol 19 ◽  
Author(s):  
Runjhun Tandon ◽  
Shripad Patil ◽  
Nitin Tandon ◽  
Pushpendra Kumar

Abstract: A novel magnetite silica-coated nanoparticle-supported molybdate nanocatalyst has been prepared successfully by a simple co-precipitation method. Prepared nanocatalyst has been characterized by different techniques like Fourier Transmission Infrared Spectroscopy (FT-IR), X-ray diffraction (XRD), Field Emission Scanning Electron Microscope (FE-SEM) and Energy Dispersive X-ray Spectroscopy (EDX). Further, the catalytic activity of the nanocatalyst was explored for N-formylation reactions under solvent-free conditions. Interestingly, the catalyst could be reused for 10 cycles and only 2 mol % of the catalyst was sufficient to catalyze the N-formylation reaction at 700C under solvent-free conditions.


2022 ◽  
Vol 23 (2) ◽  
pp. 685
Author(s):  
Nerea Guembe-Michel ◽  
Adrián Durán ◽  
Rafael Sirera ◽  
Gustavo González-Gaitano

Pseudopolyrotaxanes (PPRs) are supramolecular structures consisting of macrocycles able to thread on a linear polymer chain in a reversible, non-covalent way, often referred to in the literature as “molecular necklaces”. While the synthesis and reaction mechanisms of these structures in solution have been widely described, their solvent-free production has received little attention, despite the advantages that this route may offer. We propose in this work a kinetic mechanism that describes the PPR formation in the solid phase as a process occurring in two consecutive stages. This mechanism has been used to investigate the spontaneous formation of a PPR that occurs when grinding α-Cyclodextrin (α-CD) with polyethylene glycol (PEG). In the threading stage, the inclusion of the polymer and subsequent release of the water molecules lodged in the cavity of the macrocycle cause vibrational changes that are reflected in the time-dependence of the FTIR-ATR spectra, while the further assembly of PPRs to form crystals produces characteristic reflections in the XRD patterns, due to the channel-like arrangement of CDs, that can be used to track the formation of the adduct in crystalline form. The effects that working variables have on the kinetics of the reaction, such as temperature, feed ratio, molar mass of the polymer and the introduction of an amorphous block in the polymer structure, have been investigated. The rate constants of the threading step increase with the temperature and the activation energy of the process increases at lower proportions of CD to PEG. This is attributed to the lower degree of covering of the polymer chain with CDs that reduces the hydrogen-bonding driven stabilization between adjacent macrocycles. The formation of crystalline PPR, which takes place slowly at room temperature, is markedly promoted at higher temperatures, with lower proportions of CD favoring both the formation and the growth of the crystals. The molar mass of the polymer does not modify the typical channel-like arrangement of packed PPRs but the conversion into crystalline PPR diminishes when using PEG1000 instead of PEG400. At a microscopic level, the crystals arrange into lamellar structures, in the order of hundreds of nm, embedded in an amorphous-like matrix. The introduction of a polypropylene oxide block in the structure of the polymer (Pluronic L62) renders poorer yields and a considerable loss of crystallinity of the product of the reaction. The methodology here proposed can be applied to the general case of inclusion complexes of CDs with drugs in the solid phase, or to multicomponent systems that contain polymers as excipients in pharmaceutical formulations along with CDs.


Silicon ◽  
2022 ◽  
Author(s):  
Vijay Shekar Pulusu ◽  
Chinna Rajanna Kamatala ◽  
Anil Kumar Mardhanpally ◽  
Hemanth Sriram Yelike ◽  
Yaku Gugulothu ◽  
...  

Catalysts ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 59
Author(s):  
Renyuan Zhong ◽  
Wulin Xiong ◽  
Haoyuan Zhang ◽  
Tongtong Zeng ◽  
Shanshan Gong ◽  
...  

An efficient method for ambient-temperature synthesis of a variety of 2-substituted and 1,2-disubstituted benzimidazoles from aldehyde and phenylenediamine substrates has been developed by utilizing Co(III)/Co(II)-mediated redox catalysis. The combination of only 1 mol% of Co(acac)2 and stoichiometric amount of hydrogen peroxide provides a fast, green, and mild access to a diversity of benzimidazoles under solvent-free conditions.


Sign in / Sign up

Export Citation Format

Share Document