scholarly journals Shot Noise of Charge and Spin Current of a Quantum Dot Coupled to Semiconductor Electrodes

2015 ◽  
Vol 119 (41) ◽  
pp. 10399-10407 ◽  
Author(s):  
Zahra Sartipi ◽  
Javad Vahedi
2021 ◽  
Author(s):  
◽  
Kira Pitman

<p>In this thesis, the first steps in creating a realisable spin-injection transistor using ferromagnetic semiconductor electrodes are detailed. A spin-injection device utilising the ferromagnetic semiconductor gadolinium nitride has been designed, fabricated and electrically tested. In addition, an experimental setup for future measurements of a spin current in spin-injection devices was adapted to our laboratory-based off one developed by the Shiraishi group at Kyoto University. Issues encountered during fabrication were identified, and an optimal method for fabricating these devices was determined. Gadolinium nitride and copper were used to make the devices on Si/SiO2 substrates.  The electrical integrity and applicability of the devices for future measurements of injected spin-current was determined through electrical device testing. Resistance measurements of electrical pathways within the device were undertaken to determine the successful deposition of the gadolinium nitride and copper. IV measurements to determine if the devices could withstand the current required for spin current measurements were done. The durability of the devices through multiple measurement types was observed. It was determined that although spin-injection devices utilising gadolinium nitride can be successfully fabricated, more work needs to be done to ensure that the electrical pathways through the copper and gadolinium nitride can be consistently reproducible to allow spin-injection measurements to be done.</p>


2011 ◽  
Vol 25 (25) ◽  
pp. 2033-2039
Author(s):  
M. BAGHERI TAGANI ◽  
H. RAHIMPOUR SOLEIMANI

We study spin-dependent transport through a quantum dot with Zeeman split levels coupled to ferromagnetic leads and under influence of microwave irradiation. Current polarization, spin current, spin accumulation and tunneling magnetoresistance are analyzed using nonequilibrium Green's function formalism and rate equations. Spin-dependent beats in spin resolved currents are observed. The effects of magnetic field, temperature and Coulomb interaction on these beats are studied.


2020 ◽  
Vol 384 (24) ◽  
pp. 126607
Author(s):  
Hua Zhao ◽  
Xiaowei Zhang ◽  
Xiaochun Liu ◽  
Zhongqin Yang

Sign in / Sign up

Export Citation Format

Share Document